Методы и средства объектно-ориентированного программирования

Разработка программы для решения уравнений с n-ым количеством неизвестных и нахождения площади геометрических фигур заданных этими уравнениями. Использование численного метода решения нелинейных уравнений и метода вычисления определенного интеграла.

Подобные документы

  • Этапы решения задачи на ЭВМ: постановка условия, построение математической модели, разработка численного метода и алгоритма, написание программы. Сущность графического, аналитического и численного метода. Программа решения системы нелинейных уравнений.

    курсовая работа, добавлен 07.04.2010

  • Изучения алгоритма решения нелинейных уравнений с помощью метода Ньютона. Обзор существующих методов решения нелинейных уравнений: итераций, Ньютона, дихотомии и хорд. Алгоритм модификации метода Ньютона. Описание, тестирование и отладка программы.

    курсовая работа, добавлен 12.12.2013

  • Особенность применения численного метода для нахождения площади заданной геометрической фигуры. Использование способа половинного деления для нахождения точек пересечения. Характеристика написания программы на языке Object-Pascal в среде Delphi 7.0.

    курсовая работа, добавлен 22.02.2019

  • Определение корней нелинейного уравнения методом касательных решения нелинейных уравнений. Составление программы на языке программирования Турбо-Паскаль 7.0. Описание сущности метода касательных (метода секущих Ньютона). Результаты выполнения программы.

    контрольная работа, добавлен 16.01.2013

  • Разработка программы для нахождения с заданной точностью корней уравнения. Оценка погрешности и процесс смещения отрезка поиска корней для метода хорд. Использование метода простых итераций, метода секущих и метода касательных для решения уравнений.

    лабораторная работа, добавлен 15.11.2016

  • Классификация уравнений, основные признаки нелинейных уравнений, описание методов их решения. Способы и средства для решения уравнений в Mathcad. Алгоритм нахождения корня уравнения с помощью встроенной функции root. Решение системы нелинейных уравнений.

    презентация, добавлен 11.05.2015

  • Использование метода половинного деления для численного нахождения корней алгебраических уравнений. Алгоритм применения метода дихотомии для решения уравнений с заданной точностью, пример реализации этого алгоритма на языке программирования Pascal.

    лабораторная работа, добавлен 24.11.2013

  • Приведение численных методов решения нелинейных уравнений, систем линейных и нелинейных алгебраических уравнений, дифференциальных уравнений, определенных интегралов. Методы аппроксимации дискретных функций и методы решения задач программирования.

    учебное пособие, добавлен 09.12.2014

  • Численные методы решения нелинейных уравнений, систем линейных и нелинейных алгебраических уравнений, дифференциальных уравнений и определенных интегралов. Методы аппроксимации дискретных функций и методы решения задач линейного программирования.

    методичка, добавлен 27.02.2012

  • Выполнение решения системы алгебраических уравнений вручную в редакторе Microsoft Excel, математическом пакете MathCAD. Реализация алгоритма решения на языке VBA. Вычислительная схема метода простой итерации. Результат решения нелинейных систем уравнений.

    курсовая работа, добавлен 15.12.2019

  • Способы решения нелинейных уравнений средствами математики и с применением средств программирования. Примеры применения методов половинного деления (дихотомии), проб, хорд, касательных, итераций для решения уравнений с помощью программного обеспечения.

    статья, добавлен 24.03.2018

  • Использование метода Рунге-Кутты-Фельберга для численного решения обыкновенных дифференциальных уравнений и их систем. Основные методы нахождения порядка аппроксимации. Внешний вид процедуры для определения номера самой левой точки в массиве данных.

    контрольная работа, добавлен 28.04.2014

  • Понятие дифференциальных уравнений. Рассмотрение теоретических знаний в вопросе численного решения дифференциальных уравнений на основе метода Рунге-Кутты и основных свойств данного метода. Приобретение опыта решения дифференциального уравнения.

    реферат, добавлен 22.03.2014

  • Рассмотрение принципов разработки программы для определения площади геометрической фигуры. Описание метода решения и алгоритма программы. Определение функционального назначения. Описание логической структуры. Характеристика входных и выходных данных.

    курсовая работа, добавлен 22.02.2019

  • Основные этапы процедуры подготовки и решения задачи на ЭВМ. Понятие и свойства алгоритма. Краткое описание сущности метода касательных (метода секущих Ньютона). Разработка программы на языке Паскаль 7.0 для решения нелинейного уравнения данным методом.

    контрольная работа, добавлен 26.03.2013

  • Построение алгоритмических моделей для решения нелинейных уравнений с одной переменной в Microsoft Excel. Использование итерационного метода решения построение последовательных приближений к точному значению корня, при помощи надстройки "Поиск решения".

    лабораторная работа, добавлен 16.03.2019

  • Изучение способов решения алгебраических и трансцендентных уравнений. Описание назначения, расчет алгоритма, построение блок-схемы метода решения алгебраических уравнений методом итераций. Разработка программы для определения интервалов уравнений функции.

    контрольная работа, добавлен 04.12.2013

  • История появления и этапы развития языка программирования С++. Объектно-ориентированное программирование как основное понятие С#. Специфика решения системы линейных уравнений. Алгоритм Крамера, его формулы. Программная реализации алгоритма метода Крамера.

    курсовая работа, добавлен 19.03.2012

  • Последовательное исключение неизвестных как принцип работы метода Гаусса для решения систем линейных уравнений. Краткое описание среды визуальной разработки Borland Delphi. Характеристика основных процедур и алгоритма работы программного приложения.

    курсовая работа, добавлен 14.04.2016

  • Углубленное рассмотрение возможностей численного решения дифференциальных уравнений. Изучение и обоснование возможностей применения метода Эйлера и рассмотрение примеров решений данными методами. Встроенные процедуры решения дифференциальных уравнений.

    курсовая работа, добавлен 23.05.2021

  • Алгоритм решения системы уравнений и построения Лемнискаты Бернулли методом итераций. Построение структуры программного обеспечения, выбор языка программирования Turbo Pascal для решения задачи. Описание интерфейса приложения и диалога с пользователем.

    курсовая работа, добавлен 05.05.2014

  • Системы линейных уравнений. Метод решения через обратную матрицу. Вопросы, связанные с методом Гаусса. Разработка программного обеспечения для автоматизации процесса решения систем линейных уравнений. Использование языка программирования C++ Builder.

    курсовая работа, добавлен 04.07.2013

  • Особенности разработки прикладной программы для решения линейных уравнений методом Гаусса (методом последовательного исключения неизвестных). Характеристика функции для решения простейших задач линейного уравнения и их описание с применением языка С++.

    курсовая работа, добавлен 11.09.2015

  • Разработка системы линейных алгебраических уравнений. Постановка задачи в матричной форме. Сущность метода Гаусса—Жордана (метода полного исключения неизвестных). Описание его алгоритма и пример текста программы. Анализ результатов системы уравнений.

    реферат, добавлен 17.03.2017

  • Решение системы линейных алгебраических уравнений методом Гаусса. Программы решения нелинейных алгебраических уравнений методами дихотомии (половинного деления) и Ньютона (касательных). Численное интегрирование: формулы средних прямоугольников, Симпсона.

    контрольная работа, добавлен 15.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.