Сценарный Аск-анализ как метод разработки на основе эмпирических данных базисных функций и весовых коэффициентов для разложения в ряд функции состояния объекта или ситуации по теореме А.Н. Колмогорова

Рассмотрение математической модели АСК-анализа как варианта общего и универсального практического решения проблемы разработки базисных функций и весовых коэффициентов для разложения в ряд по ним произвольной функции состояния идентифицируемого объекта.

Подобные документы

  • Описание построения некоторых функциональных пространств дифференцируемых функций многих переменных и построенных весовых пространств. Построение усредняющей функции и основного тождества. Нахождение вектора с целыми неотрицательными координатами.

    статья, добавлен 21.06.2018

  • Численный метод решения интегрального уравнения с ядром, имеющим особенности первого порядка по обеим переменным. Аппроксимация кусочно-линейными функциями. Расчет коэффициентов методом коллокации. Вычисление сингулярных интегралов от базисных функций.

    статья, добавлен 13.05.2017

  • Члены тригонометрических рядов. Свойство системы тригонометрических функций. Ряд Тейлора. Особенности ряда Фурье четной и нечетной функции. Рабочие формулы для разложения функции в ряд Фурье. Применение программы MatLab для вычисления коэффициентов ряда.

    контрольная работа, добавлен 23.04.2011

  • Построение математической модели объекта управления в пространстве состояния. Определение спектральной плотности белого шума с помощью корреляционной функции. Эквивалентная схема объекта управления. Составление структурной схемы и сигнального графа.

    курсовая работа, добавлен 11.03.2012

  • Формульное выражение процесса нахождения решения примеров в пространстве по методу приближённого значения дифференциального уравнения. Очерк свойств базисных функций и процесса построения матриц в системе коэффициентов билинейной и линейной форм.

    презентация, добавлен 30.10.2013

  • Расчет старших коэффициентов и построение разложения в асимптотический ряд фундаментальной матрицы для линейной сингулярно возмущенной динамической системы в случае нестационарной матрицы коэффициентов. Особенности применения метода пограничных функций.

    курсовая работа, добавлен 17.05.2014

  • Сравнительный анализ распространенных экспертных методов измерения алгоритмов определения весовых коэффициентов: ранжирования, одинарного и двойного попарного сопоставления. Анализ их сложности и условия применения. Используемые показатели качества.

    статья, добавлен 02.02.2019

  • Анализ системы организации медицинской помощи лицам с сердечно-сосудистыми заболеваниями, содержащимся в учреждениях уголовно-исполнительной системы. Вычисление вектора приоритетов матрицы парных сравнений. Определение итоговых весовых коэффициентов.

    статья, добавлен 09.06.2018

  • Основные недостатки существующих методов определения фильтрационных параметров. Метод модулирующих функций (М-метод), его сущность. Определение постоянных и переменных коэффициентов в дифференциальных уравнениях. Типичный график модулирующей функции.

    статья, добавлен 10.07.2013

  • Логарифмическая производная функции. Производная степенно показательной функции. Производные и дифференциалы высших порядков. Формула Тейлора с остаточным членом в форме Пеано. Теоремы о дифференцируемых функциях. Формулы разложения элементарных функций.

    контрольная работа, добавлен 26.05.2014

  • Понятие качества, методы его оценки на основе измерений свойств объекта и на основе коэффициентов "трудности". Операционные основы построения производственно-квалитативных функций. Основная формула теории управления с обратной связью и ее приложения.

    методичка, добавлен 10.05.2015

  • Знакомство с особенностями вычисления значения функции в заданной точке с помощью разложения в ряд Тейлора, анализ проблем. Общая характеристика гиперболических функций, способы определения. Рассмотрение вопросов о разложимости функции в ряд Тейлора.

    контрольная работа, добавлен 18.09.2013

  • Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.

    курсовая работа, добавлен 22.04.2011

  • Применение классической модели регрессии для анализа однородных объектов. Разделение территории на зоны, определение административных границ. Использование методов движущегося окна, фиксированных и адаптивных ядер при вычислении весовых коэффициентов.

    статья, добавлен 24.02.2019

  • Неравенства типа Колмогорова и их роль при решении задач теории приближения. Исследование возможности продолжения произвольной функции f, принадлежащей к множеству L с любого отрезка I монотонности f на всю ось с сохранением норм f и f(r) на отрезке.

    статья, добавлен 30.10.2016

  • Определение затрат на осуществление связи при имеющихся параметрах кабелей. Построение вектора-градиента, составленного из коэффициентов целевой функции. Нахождение оптимального решения двойственной задачи по теореме равновесия. Метод идеальной точки.

    контрольная работа, добавлен 31.03.2015

  • Методика определения многочлена Гегенбауэра. Специфические особенности использования неванлинновских характеристических уравнений для нахождения дельта-субгармонических функций. Алгоритм разложения в ряд Тейлора выражения с центром в нуле функции.

    статья, добавлен 30.10.2016

  • Анализ произвольной функции, определенной на интервале от нуля до бесконечности. Свойства усредненной функции, ее первой и второй производных. Анализ их поведения в случае осциллирующих коэффициентов. Определение интегралов в числителе и знаменателе.

    контрольная работа, добавлен 26.02.2020

  • Примеры решения типовых задач и задачи для самостоятельного решения. Область определения функции. Выяснение четности (нечетности) функции. Построение графика функции. Пределы функций, раскрытие неопределенности. Преображение графиков элементарных функций.

    практическая работа, добавлен 20.12.2011

  • Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. График разности исходной (табличной) и аппроксимирующей функций. Численное решение задачи коши для обыкновенного дифференциального уравнения первого порядка.

    контрольная работа, добавлен 01.04.2015

  • Ознакомление с историей открытия ряда Тейлора, который применяется при аппроксимации функции многочленами. Рассмотрение формулы Тейлора. Исследование рядов Маклорена некоторых функций. Характеристика натурального логарифма и биноминального разложения.

    контрольная работа, добавлен 16.11.2017

  • Основные виды числовых рядов. Критерий абсолютной сходимости. Особенности разложения элементарной функции в ряд Фурье. Ряд Фурье непериодических функций с заданным периодом. Разложение в ряд Фурье по косинусам и синусам. Ряд Фурье на полупериоде.

    реферат, добавлен 12.06.2015

  • Описание математической модели объекта управления, с заданной структурной схемой, в векторно-матричной форме. Определение установившегося значения координат состояния объекта и подача управляющего и возмущающего воздействий в виде операторных уравнений.

    практическая работа, добавлен 12.02.2018

  • Основные понятия, определения и теоремы асимптотической последовательности и асимптотического ряда. Примеры гамма-функций, интегральных дзета-функций Римана и функций ошибок. Общие свойства обобщённого разложения с обычным асимптотическим разложением.

    практическая работа, добавлен 07.09.2016

  • Представление булевых функций в совершенной дизъюнктивной нормальной форме. Многоступенчатое склеивание. Минимизация булевых функций. Карта Карно-Вейча для четырех переменных. Метод Квайна и Мак-Класки. Диаграммы Вейча, метод неопределенных коэффициентов.

    курсовая работа, добавлен 22.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.