Определение оптимального размера нейросети обратного распространения через сопоставление средних значений модулей весов синапсов
Задача определения оптимальной структуры нейросети. Зависимости величин ошибок обучения и обобщения (процент неправильно решенных примеров в соответствующей выборке) и индикаторов внутренних свойств нейросетей от числа нейронов в скрытом слое сети.
Подобные документы
Разработка алгоритма и программирование вычислительного процесса двухслойной нейросети на языке С#. Исследование параметров обучения нейросети методом обратного распространения ошибки. Анализ количества шагов, скорости обучения и коэффициента сигмоида.
курсовая работа, добавлен 21.02.2016Изучение вычислительно экономичного, не зависящего от вида целевой функции и структуры нейросети, решения для определения значимости элементов и сигналов нейросети. Оценка первого порядка изменения выходных сигналов нейросети, как показатель значимости.
статья, добавлен 08.02.2013Основная задача обучения единичной нейросети. Предобработка данных, выбор примеров в обучающую выборку. Схемы экстраполяции и оценивания предельных значений эффектов. Растущие нейронные сети, коллективы нейросетей. Сущность гибридных алгоритмов.
статья, добавлен 08.02.2013Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.
статья, добавлен 29.09.2012Разработка нейронной сети для распознавания изображений. Рассмотрение примеров применения машинного обучения в различных областях. Фреймворки и библиотеки для упрощения разработки ботов для Telegram. Создание приложения при помощи нейросети на Python.
отчет по практике, добавлен 20.12.2023Проблема выбора оптимального метода подбора персонифицированного лечения пациента. Исследование метода взвешенных исходов для анализа выживаемости на выборке пациентов с детским лимфобластным лейкозом. Применение данных для машинного обучения нейросети.
дипломная работа, добавлен 27.08.2016Фрагмент нейросети (входной и выходной слои). Простейшая линейная функция от двух входов. Трактовка работы сети для имитации прохождения по ней возбуждения, управления. Теорема о сходимости перцептрона. Метод обратного программного распространения ошибки.
презентация, добавлен 16.11.2014Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024Алгоритм обучения нейронной сети с помощью процедуры обратного распространения. Диаграмма сигналов в сети. Программирование нейронной сети с применением объектно-ориентированного подхода. Иерархия классов библиотеки для сетей обратного распространения.
статья, добавлен 25.03.2013Общая структура топологии применения генетических алгоритмов для обучения нейронных сетей. Методы и алгоритмы предварительной подготовки данных, расчета структуры нейросети и модифицированных методов обучения, проверки работы на валидационной выборке.
статья, добавлен 12.05.2017Пример работы алгоритма обратного распространения ошибки. Функция активации сигмоидного типа. Геометрическая интерпретация алгоритма обратного распространения. Анализ условий и предпосылок для успешного обобщения. Механизм контрольной кросс-проверки.
презентация, добавлен 16.10.2013Свойства и структура нейронных сетей, их применение в сфере компьютерных технологий. Поиск путей увеличения скорости протекания процесса обучения. Анализ зависимость ошибки обучения от сложности структуры персептрона и количества нейронов в скрытом слое.
статья, добавлен 03.02.2021Традиционные алгоритмы обучения как основные причины возникновения переобучения нейросети, обучение по суммарному градиенту и особенно надстройка над последним метода наподобие сопряженных градиентов. Методы борьбы с данным эффектом и их успешность.
статья, добавлен 08.02.2013Описание двух вариантов введения допуска по точности решение задачи в робастную целевую функцию на основе обобщенной степенной метрики. Применение целевой функции для традиционной постановки обучения нейросети-предиктора и для задач автоассоциации.
статья, добавлен 08.02.2013Исследование задачи машинного обучения. Распознавание на изображении образа кошки. Пример распознавания лиц на Facebook. Пример простейшей схемы нейросети. Пример отображения некоторых архитектур нейросетей. Анализ программ-поисковиков в Интернете.
статья, добавлен 13.03.2019Расчет положения препятствий относительно транспортного средства и желаемой реакции искусственного интеллекта. Аппроксимация функций с областями значений, которые могут иметь несколько измерений - особенность нейронной сети обратного распространения.
статья, добавлен 02.06.2021Способы предобработки количественных признаков обучающей выборки, индивидуальные для признака и интегральные для выборки критерии оптимальности предобработки. Подтверждение ускорения обучения backprop-нейросети при смене заданного способа предобработки.
статья, добавлен 08.02.2013Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016Исследование приемов коррекции и уточнения решения обратной задачи, полученного градиентным обучением входных сигналов нейросети-классификатора. Получение дополнительной информации и определение степени доверия к выданному нейросетью начальному решению.
статья, добавлен 08.02.2013Описание основ построения нейронных сетей, включая сверточные нейросети. Рассматривается способ реализации механизма распознавания английских рукописных символов и цифр на основе полносвязной и свёрточной нейросетей с использованием фреймворка PyTorch.
статья, добавлен 06.09.2021Анализ и характеристика возможностей современных нейросетей, создание игровых приложений. Рассмотрение таких этапов как создание идеи, сюжета, концепт-дизайн, разработка и продвижение итогового продукта. Использование нейросети сбербанка "Gigachat".
статья, добавлен 30.10.2024Двумерная визуализация распределения примеров выборки в пространствах пар наиболее чувствительных признаков, оценка ее результатов. Повторение циклов из шагов исключения примеров-выбросов, повторного обучения нейросети, нового расчета чувствительностей.
статья, добавлен 08.02.2013Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.
реферат, добавлен 20.03.2009Задача целенаправленной предобработки обучающей выборки для ускорения обучения нейросети. Значение константы Липшица выборки, как индикатор сложности выборки. Показатели зависимости свойств обученных нейронных сетей от величины константы Липшица выборки.
статья, добавлен 08.02.2013История создания искусственной нейронной сети. Перцептрон как одна из первых моделей нейросети. Архитектура когнитрона, его иерархическая многослойная организация. Классификация нейронных сетей по характеру обучения, основные сферы их применения.
курсовая работа, добавлен 16.12.2016