Детекция облачности методами машинного обучения
Изучение основных метеорологических и стандартных метрик классификации в решении задачи детекции облачности. Проверка гипотезы касательно источников данных и их влияние на результат модели. Эксперименты с архитектурами моделей прогнозирования облачности.
Подобные документы
Решение задачи классификации переводов клиентов банка на легальные и мошеннические с использованием средств машинного обучения. Обнаружение мошеннических транзакций средствами машинного обучения. Решение задачи построения ансамбля классификаторов.
дипломная работа, добавлен 18.07.2020Рассмотрение машинного обучения для классификации комментариев в рамках курсового проекта по дисциплине "Machine Learning. Обучающиеся технические системы". Автоматическое определение эмоциональной окраски (позитивный, негативный) текстовых данных.
статья, добавлен 19.02.2019Единое информационное хранилище данных. Формирование аналитической отчетности. Построение комплекса динамических имитационных моделей для выполнения многовариантных расчетов. Интеграция источников данных. Проверка адекватности имитационной модели.
курсовая работа, добавлен 26.12.2014Машинное обучение для задачи выявления паттернов поведения пользователя в рекомендательных системах. Суть подхода к разработке модели признаков для задачи формирования предсказаний в рекомендательной системе с учетом паттернов поведения пользователя.
дипломная работа, добавлен 27.08.2020Задачи для определения оптимальной модели нейронной сети. Характеристика общей модели нейронной сети. Сравнение различных алгоритмов поиска оптимального пути. Эффективность пчелиного алгоритма в решении задачи исследования и патрулирования местности.
статья, добавлен 08.03.2019Сбор и агрегация исторических данных о регулярных рейсах авиакомпаний. Особенность создания модели машинного обучения для предсказания вероятности отмены маршрута. Характеристика формирования ИТ-сервиса для предоставления доступа к предиктивной модели.
дипломная работа, добавлен 09.08.2018Эталонная модель Всемирного форума по интернету вещей. Анализ центров обработки данных и облачных вычислений. Исследование подходов к разработке распределенных алгоритмов обучения. Методы машинного обучения. Изучение наивного байесовского классификатора.
дипломная работа, добавлен 07.12.2019Построение модели машинного обучения для обработки входящих запросов в службу технической поддержки. Решение задачи классификации запросов в службу технической поддержки при помощи оригинального алгоритма, учитывающего специфику предметной области.
статья, добавлен 25.04.2022Алгоритм детекции QRS комплексов, его оптимизация для работы в составе программного обеспечения микроконтроллера. Разработка ПО для детекции комплексов QRS электрокардиограммы, проверка его эффективности на базе данных MIT-BIH Arrhythmia Database.
статья, добавлен 30.08.2018Способ по предсказанию успешности реакции с помощью методов машинного обучения. Модели с использованием методов глубокого обучения, решающие задачи генерации потенциально неуспешных реакций и классификации реакций на успешно проходящие и некорректные.
дипломная работа, добавлен 24.10.2020Представление основных понятий и определений касательно баз данных и современных информационных систем. Рассмотрение концептуального, логического и физического уровней описания данных. Приведение особенностей основных моделей, их достоинств и недостатков.
презентация, добавлен 13.12.2013Изучение алгоритмов машинного обучения, направленных на выявление закономерностей в графических данных. Применение сверточных нейронных сетей при работе со спутниковыми изображениями. Создание интерактивной карты для визуализации распознанных объектов.
дипломная работа, добавлен 02.09.2018Теоритические аспекты и модели машинного обучения. Получение и интерпретация визуальной информации. Цели и задачи идентификации объектов по фотографиям. Использование искусственной нейронной сети Keras для распознавания ос и пчел от других насекомых.
курсовая работа, добавлен 06.03.2022Методика статистического моделирования данных для обучения нейронных сетей с целью прогнозирования прочностных свойств волокнисто-пористых биокомпозитов. Количество данных, необходимое для обучения и тестирования сети. Эмпирическая линейная регрессия.
статья, добавлен 27.04.2017Ускорение обработки огромных информационных массивов как одна из основных целей методики обнаружения вредоносного трафика с использованием анализа данных. Особенности настройки гиперпараметров алгоритма, который реализует метод машинного обучения.
статья, добавлен 18.01.2021Исследование классификации объектов и систем по их способности использовать информацию. Изучение понятия о жизненном цикле систем. Характеристика этапов создания модели. Анализ моделей аппроксимации, интерполяции, прогнозирования, метода Монте-Карло.
реферат, добавлен 21.10.2012Исследование методов Transfer Learning для семантического анализа и их сравнение на данных, содержащих упоминания компании Тинькофф Банк на различных Интернет-ресурсах. Реализация моделей для классификации текстов с использованием различных метрик.
дипломная работа, добавлен 01.12.2019Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.
дипломная работа, добавлен 28.08.2020Сравнение статистики, машинного обучения и Data Mining, методы ее применяемые для решения задач классификации, способы классификации и прогнозирования в процессе решения бизнес-задач, прикладное программное обеспечение для работы с нейронными сетями.
книга, добавлен 09.09.2012Возможность применения машинного обучения при классификации спама. Структура файла "spam". Программный код использования библиотеки pandas, перевода категориальных признаков в числовые. Код тестирования различного количества нейронов, его анализ.
статья, добавлен 17.02.2019Синтез и верификация модели прогнозирования развития многоотраслевой агропромышленной корпорации. Этапы АСК-анализа, проверка объектов обучающей выборки на достоверность путем идентификации. Схема преобразования данных в информацию в системе "Эйдос".
статья, добавлен 20.05.2017Возможности использования методов машинного обучения для анализа реальных данных по вибрации ключевых узлов центробежного компрессора. Дерево решения для массива данных, полученных в одном из нефтеперерабатывающих заводов. Критерии оценки отказа
статья, добавлен 09.09.2024Общая характеристика статьи, описывающей алгоритм рекомендации перемещения метода с помощью машинного обучения. Рассмотрение основных особенностей применения методов машинного обучения для автоматической рекомендации рефакторинга "перемещение метода".
дипломная работа, добавлен 01.12.2019Проблема выбора оптимального метода подбора персонифицированного лечения пациента. Исследование метода взвешенных исходов для анализа выживаемости на выборке пациентов с детским лимфобластным лейкозом. Применение данных для машинного обучения нейросети.
дипломная работа, добавлен 27.08.2016Разработка и анализ работы алгоритмов для анализа тональности агрессивных комментариев, автоматического определения их эмоционального окраса. Реализация классифицирующих моделей машинного обучения, оценка их качества и сравнение их эффективности.
дипломная работа, добавлен 10.12.2019