Об одном обобщении интегро-дифференциального неравенства Виртингера
Получение необходимых и достаточных условий справедливости интегрально-дифференциального неравенства. Особенности использования методов исследования вариационных задач, разработанные Пермским семинаром по функционально-дифференциальным уравнениям.
Подобные документы
Анализ геометрических задач, приводящих к дифференциальным уравнениям: задача о нахождении кривой наискорейшего спуска и задача о криволинейной трапеции с наибольшей площадью. Решение дифференциального уравнения, описывающее эволюцию некоторого процесса.
статья, добавлен 25.01.2021Получение достаточных условий разрешимости краевой задачи для обыкновенного дифференциального уравнения третьего порядка в случае резонанса. Рассмотрение периодической краевой задачи для обыкновенного дифференциального уравнения. Ядро и образ оператора.
статья, добавлен 26.04.2019Получение условий разрешимости краевой задачи для функционально-дифференциального уравнения третьего порядка в случае резонанса. Ядро и образ оператора. Относительный коэффициент сюръективности оператора. Пространство абсолютно непрерывных функций.
статья, добавлен 26.04.2019Алгоритм решения задачи на безусловный экстремум с использованием необходимых и достаточных условий. Метод множителей Лагранжа как один из общих подходов, используемых при решении задач оптимизации на основании теории дифференциального исчисления.
дипломная работа, добавлен 26.07.2018Исследование спектральных свойств дифференциального оператора второго порядка методом подобных операторов. Получение результатов об асимптотике спектра и сходимости спектральных разложений дифференциального оператора. Коэффициенты разложения функции.
статья, добавлен 01.02.2019Систематизация теоретического материала по теме "Неравенства и оценка в текстовых задачах" и его применение к решению. Разработка типологии задач, в решении которых используется неравенства и оценка текстовых задач. Задачи, решаемые системой неравенств.
курсовая работа, добавлен 25.02.2019Исследование поведения функции кратности непрерывного спектра самосопряженного дифференциального оператора, порожденного формально самосопряженным дифференциальным выражением в гильбертовом пространстве. Обоснование результатов комплексного анализа.
статья, добавлен 03.03.2018Математический анализ как совокупность разделов математики, посвящённых исследованию функций и их обобщении методами дифференциального и интегрального исчисления. Использование математических методов в сфере управления, решение экономических задач.
эссе, добавлен 24.08.2013Особенность использования свойств гипергеометрической функции Гауса и классических методов интегральных уравнений. Характеристика получения двухточечной краевой задачи для обыкновенного нагруженного интегро-дифференциального математического равенства.
статья, добавлен 20.05.2017Рассмотрение особенностей решения неравенств с модулем. Изображение на координатной плоскости множества решений неравенства. Закономерности построения графика параболы. Характеристика основных методов решения задач с заданными параметрами неравенств.
учебное пособие, добавлен 10.04.2015Получение новых достаточных условий разрешимости краевых задач для различных классов квазилинейных функционально-дифференциальных уравнений с необратимой линейной частью. Проблема разрешимости операторного уравнения, характеристика используемых теорем.
автореферат, добавлен 26.01.2018Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
курсовая работа, добавлен 01.10.2012Понятие и математическое описание рациональных уравнений и неравенств. Иррациональные уравнения и дробные неравенства. Особенности методов изучения тригонометрических и логарифмических уравнений. Трансцендентные неравенства и основные методы их решения.
презентация, добавлен 08.09.2013Изучение поведения решений дифференциального уравнения. Вычисление асимптотики собственных значений дифференциального оператора. Выведение асимптотика решений соответствующего дифференциального уравнения при больших значениях спектрального параметра.
статья, добавлен 21.06.2018Задача о вариационном неравенстве. Необходимость разработки теории краевых задач с разрывными по фазовой переменной нелинейностями. Некоэрцитивные вариационные неравенства с непрерывными и многозначными нелинейностями. Условие Ландесмана-Лазера.
автореферат, добавлен 10.12.2013Понятие, определение и свойства неопределенного интеграла. Представление рациональной функции в виде суммы простейших дробей. Интегрирование простейших дробей. Понятие дифференциального бинома. Примеры вычисления интегралов от дифференциального бинома.
курсовая работа, добавлен 10.12.2017Решение первой краевой задачи для вырождающегося дифференциального уравнения с частными производными при заданных условиях. Нахождение компонентов решения задачи, интегрирование неравенства. Области определения данной функции, ее частные случаи.
статья, добавлен 31.05.2013Линейные, квадратные, тригонометрические уравнения и неравенства с параметром и к ним сводимые, их общая характеристика и математические свойства, направления исследования. Их разновидности и признаки, основные приемы и принципы решения, результаты.
учебное пособие, добавлен 27.09.2013Порядок и решение дифференциального уравнения. Интегрирование как процесс нахождения решения дифференциального уравнения. Уравнение с частными производными. Теорема существования и единственности решения дифференциального уравнения первого порядка.
реферат, добавлен 22.05.2014Изложение свойств показательной и логарифмической функций; применение этих свойств в жизни; способы решения показательных и логарифмических уравнений и неравенств. Высказывания А. Эйнштейна и Д. Пойа о важности и вечности уравнений и решении задач.
презентация, добавлен 07.05.2014Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.
статья, добавлен 26.07.2016Изучение вариационных неравенств в качестве инструмента для построения математической модели задачи потокового равновесия в транспортной сети, задаваемой транспортные потоки из частного автотранспорта. Распараллеливание методов при численной реализации.
статья, добавлен 02.02.2019Неравенства типа Колмогорова и их роль при решении задач теории приближения. Исследование возможности продолжения произвольной функции f, принадлежащей к множеству L с любого отрезка I монотонности f на всю ось с сохранением норм f и f(r) на отрезке.
статья, добавлен 30.10.2016Особенности построения интегральной кривой дифференциального уравнения первого порядка методом изоклин. Методы решения физической задачи с его помощью. Нахождение закона движения материальной точки с помощью дифференциального уравнения второго порядка.
курсовая работа, добавлен 10.01.2012