Задачі з параметром. Похідна та її застосування
Розв’язання задач з параметрами на прикладі лінійних, квадратних та графічних рівнянь. Вивчення механічного та геометричного змісту похідних та їх застосування у основних елементарних, обернених, складених функціях та логарифмічному диференціюванні.
Подобные документы
Вивчення геометричного змісту похідної. Розгляд застосування похідної для розв’язання рівнянь і нерівностей. Описання методу наближеного знаходження кореня рівняння, методів хорд і дотичних. Розв’язування економічних задач за допомогою диференціювання.
дипломная работа, добавлен 29.01.2015Алгоритми розв’язування систем лінійних рівнянь з невідомими та параметрами. Використання квадратних рівнянь з параметрами при розв’язуванні фізичних задач. Алгебраїчні, ірраціональні, показникові, логарифмічні та тригонометричні рівняння з параметрами.
учебное пособие, добавлен 17.02.2022Математичне моделювання у задачах економічного змісту. Системи лінійних рівнянь з двома змінними, рівняння бюджетної лінії, закон Госсена. Розв'язування задач на знаходження ринкової рівноваги. Задачі на визначення наборів товару раціональним споживачем.
контрольная работа, добавлен 24.01.2018Вивчення теми "Квадратні рівняння" у середній школі та її застосування. Означення та види квадратних рівнянь, способи їх розв’язування, застосування теореми Вієта. Розклад квадратного тричлена на лінійні множники. Методика вивчення квадратних рівнянь.
курсовая работа, добавлен 12.12.2018Розробка і застосування методики дослідження обернених задач, що базується на зведенні обернених задач до систем операторних рівнянь другого роду і аналізі методу параметрикса. Дослідження нехарактеристичної задачі Коші для рівняння теплопровідності.
автореферат, добавлен 15.11.2013Прямі і наближені методи розв’язання систем лінійних алгебраїчних рівнянь. Метод Гауса. Чисельне розв’язання нелінійних алгебраїчних і трансцендентних рівнянь та їх систем. Наближене розв’язання крайової задачі для звичайних диференціальних рівнянь.
курс лекций, добавлен 10.04.2012Пропозиція та обґрунтування схеми наближеного розв’язання крайової задачі за допомогою кубічних сплайнів дефекту два. Дослідження умов для лінійних диференціальних рівнянь із змінним запізненням. Побудова ефективних обчислювальних алгоритмів рішення.
статья, добавлен 25.08.2016Умови збіжності матриць Гріна лінійних крайових задач для систем диференціальних рівнянь першого порядку по нормі простору Лебега. Аналіз неперервності за параметром розв’язків лінійних крайових задач для систем диференціальних рівнянь першого порядку.
автореферат, добавлен 27.08.2015Розробка методів гарантованого оцінювання лінійних функціоналів від розв'язків одновимірних крайових задач і крайових задач для еліптичних рівнянь з спостереженнями функцій та їх похідних. Доведення єдиності узагальнених розв'язків одержаних рівнянь.
автореферат, добавлен 22.06.2014Викладення класу крайових задач для лінійних рівнянь з екстремальною граничною умовою. Дослідження матричної задачі Рімана на дійсній осі та побудова розв’язків таких крайових задач. Розроблення і обґрунтування методів наближеного розв’язання рівнянь.
автореферат, добавлен 10.08.2014Систематизація знань учнів. Усування помилок під час розв’язування вправ і задач, які зводиться до квадратних рівнянь. Навики розв’язку лінійних, квадратних, дробово-раціональних рівнянь. Мотивація навчальної діяльності учнів. Актуалізація опорних знань.
реферат, добавлен 29.01.2009- 12. Параметричні задачі та стійкість при моделюванні евклідовими комбінаторними задачами оптимізації
Алгоритми розв’язування задач з параметром у лінійних цільових функціях, системах обмежень, розв’язування узагальнених параметричних задач на цих множинах, модифікований алгоритм побудови опуклої оболонки, новий критерій i-граней довільного многокутника.
автореферат, добавлен 24.02.2014 Розв’язування систем лінійних рівнянь з довільним числом невідомих. Методи розв'язування систем лінійних рівнянь: точні й ітераційні. Система двох рівнянь з двома невідомими. Розв’язання систем лінійних рівнянь методом Гауса, Крамера, матричним методом.
курсовая работа, добавлен 23.04.2011- 14. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Розв’язння задачі Коші для багатовимірних систем лінійних функціонально-диференціальних рівнянь загального вигляду. Монотонна залежність розв’язання початкової задачі від адитивних збурень заданого рівняння та початкових умов, ітераційні процеси.
автореферат, добавлен 29.07.2014 Суть функціонального рівняння. Розв'язання функціонального рівняння способом заміни та утворенням системи лінійних рівнянь. Задачі про існування функції при певних умовах. Розв'язання нестандартних функціональних рівнянь. Суть графічного розв’язання.
курсовая работа, добавлен 02.01.2014Основні теоретичні відомості: походження поняття похідної; зростання та спадання функції; найбільше та найменше значення функції; означення дотичної. Правила диференціювання; застосування похідної для розв'язування рівнянь. Текстові задачі на екстремум.
контрольная работа, добавлен 29.04.2018Побудова процедури для наближення розв'язку задачі тригонометричними поліномами. Застосування пакета Maple в навчальному процесі під час вивчення вищої математики. Підвищення рівня фундаментальності математичної освіти. Розв'язання типових задач.
статья, добавлен 30.07.2016- 18. Багатоточкові задачі для гіперболічних рівнянь та рівнянь, не розв’язаних відносно старшої похідної
Дослідження розв’язності багатоточкових задач для лінійних рівнянь з частинними похідними зі змінними коефіцієнтами. Характеристика метричних тверджень про оцінки знизу малих знаменників, які виникають при побудові розв'язків розглядуваних задач.
автореферат, добавлен 12.07.2014 Встановлення умов існування та єдиності розв'язку обернених задач визначення залежного від часу старшого коефіцієнта для анізотропного параболічного рівняння. Основи застосування теореми Шаудера. Аналіз властивостей інтегральних рівнянь Вольтерра.
автореферат, добавлен 17.07.2015Розгляд систем лінійних рівнянь. Рядки і стовпці матриці, їх функції. Критерій сумісності, визначеності системи лінійних рівнянь. Рядковий і стовпцевий ранги матриці. Розв’язання системи лінійних рівнянь методом послідовного виключення невідомих.
лекция, добавлен 16.07.2017Методика побудови загального псевдорозв’язку систем лінійних алебраїчних рівнянь. Аспекти псевдообернення матриць на системи з розподіленими параметрами для розв’язання оберненних задач динаміки цих систем в обмежених просторово-часових областях.
автореферат, добавлен 11.11.2013- 22. Метод Гаусса
Сутність і зміст методі Гауса, напрямки та сфери його практичного застосування: розв’язання загальної системи лінійних рівнянь, зведення до східчастого виду послідовним застосуванням елементарних перетворень. Зв'язок з розкладанням матриці на множники.
контрольная работа, добавлен 17.06.2015 Встановлення умов розв’язуваності крайових задач для лінійних та слабконелінійних інтегро-диференціальних рівнянь з параметрами та обмеженнями і розробка ефективних методів проекційно-ітеративного типу побудови їх розв’язків. Теорії інтегральних рівнянь.
автореферат, добавлен 20.07.2015Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.
автореферат, добавлен 27.08.2015Встановлення умов і вигляду розв'язку асимптотичної задачі для еволюційного рівняння з неоднорідною частиною у вигляді многочлена та розв'язності деяких обернених (багатоточкових) задач для рівняння з параметрами у рефлексивному банаховому просторі.
автореферат, добавлен 28.06.2014