О классах неинвариантных подгрупп в непериодических группах
Особенность описания периодических групп, содержащих бесконечную абелеву подгруппу и имеющих конечное множество классов неинвариантных сопряженных подгрупп. Проведение исследования ступени разрешимости всякой неинвариантной разрешимой подгруппы группы G.
Подобные документы
Описание всех локально конечных непримарных групп, в которых пересечение всех неинвариантных подгрупп совпадает с единичной подгруппой. Пересечение всех неинвариантных подгрупп каждой собственной недедекиндовой подгруппы отлично от единичной подгруппы.
статья, добавлен 26.04.2019Классификация непериодических неабелевых локально разрешимых групп. Описание всех непериодических групп, в которых нетривиально пересечение всех неинвариантных подгрупп. Неабелевы, бесконечная циклическая группы. Инвариантная периодическая подгруппа.
статья, добавлен 26.04.2019Исследование максимальных подгрупп конечных разрешимых групп путем определения основных понятий - разрешимая группа, ступень разрешимости группы, неразрешимая группа, замкнутая группа, и ограничение и доказательство теорем о пересечении подгрупп.
курсовая работа, добавлен 22.09.2009Исследование и анализ конечных групп с условием инцидентности для ненильпотентных подгрупп. Ознакомление с ненильпотентными группами, которые содержат истинную подгруппу Шмидта. Определение и характеристика особенностей конечной неразрешимой группы.
статья, добавлен 26.04.2019Понятие ранга инцидентности группы как максимального числа ее попарно неинцидентных подгрупп. Нахождение d-ширины (ранга инцидентности) конечных групп, имеющих инвариантную циклическую подгруппу простого индекса. Факторы композиционного ряда такой группы.
статья, добавлен 26.04.2019- 6. Описание конечных групп с плотной системой F-субнормальных подгрупп для формации дисперсивных групп
Строение групп по заданным свойствам системы их подгрупп как направления в теории конечных групп. Понятие субнормальности в теории формаций. Доказательство теорем Машке и Бернсайда. Анализ конечных групп с плотной системой F-субнормальных подгрупп.
курсовая работа, добавлен 07.03.2010 Группы с различными условиями инцидентности. Конечные ненильпотентные разрешимые PIN-группы. Прямое произведение циклических групп простых порядков. Группы, содержащие не более одной собственной непримарной подгруппы. Элементарная абелева группа.
статья, добавлен 26.04.2019Изучение строения подкласса класса абелевых групп. Исследование особенностей расчета рациональных чисел. Внешняя характеристика пространств и бикомпактов. Определение подпрямой суммы делимых рациональных групп и их бесконечных циклических подгрупп.
статья, добавлен 25.11.2016Решение типовых задач, посвященных алгебраическим структурам. Приведение примеров групп и подгрупп, определение смежных классов и гомоморфизмов. Изучение понятия и свойств колец и полей. Определение признаков множества, являющегося идеалом в кольце.
учебное пособие, добавлен 02.04.2015Группы со следующим условием инцидентности: любые две истинные подгруппы, порядок пересечения которых не делит фиксированное число n. Непримарные конечные нильпотентные Fn-группы с непустым множеством. Следствия и доказательства лемм, их достаточность.
статья, добавлен 26.04.2019Абелев неединичный член ряда коммутантов группы G. Порядок всякой силовской подгруппы группы G. Произвольная неразрешимая группа, являющаяся минимальным нормальным делителем. Проведение непосредственной комплексной проверки достаточности теоремы.
статья, добавлен 26.04.2019Изучение особенностей применения основной теоремы теории делимости к циклическим подгруппам. Исследование аддитивной группы целых чисел. Определение сущности изоморфизма. Ознакомление с теоремой теории делимости. Анализ примеров циклических групп.
контрольная работа, добавлен 14.06.2015Образующие элементы колец и полей инвариантов коприсоединенных представлений борелевских и максимальных унипотентных подгрупп в простых группах Ли. Особенности и условия применения метода редукции сферических функций, анализ полученных результатов.
статья, добавлен 31.05.2013Понятие, свойства алгебраических операций. Изоморфизм групп, подгруппы. Смежные классы, фактор-группы, гомоморфизм и циклические группы. Определение графов, изоморфизм. Графы специального вида, деревья, циклы и планарность. Группы подстановок и тетраэдра.
курсовая работа, добавлен 29.06.2014Подгруппы и факторгруппы групп с операторами. Теоремы о гомоморфизмах. Содержание и принципы реализации теорем Шура – Цассенхауза и Фейта – Томпсона. Понятие и содержание, свойства обобщенной подгруппы Фраттини. Расширения посредством автоморфизмов.
курсовая работа, добавлен 08.01.2013Понятие абстрактной группы. Свойства алгебраических операций. Реализация абстрактной группы как группы преобразований. Доказательство теоремы Коши, Лагранжа. Теорема о подгруппах конечной циклической группы. Смежные классы, классы сопряженных элементов.
реферат, добавлен 24.06.2010Доказательство теоремы, позволяющей решить проблему разрешимости (выполнимости) для формул исчисления высказываний, содержащих предикаты, зависящие от одного переменного. Представление равносильности в виде тождественно истинной формулы для любого поля.
контрольная работа, добавлен 05.11.2017Основные свойства изоморфных подгрупп некоторой абстрактной группы G – циклического изоморфизма. Рассмотрение примера матричного представления циклического изоморфизма четвертого уровня. Простейшие решения системы уравнений циклического изоморфизма.
статья, добавлен 03.05.2012Понятие дифференцируемости на замкнутой области. Анализ пространства Соболева в теоретических и прикладных вопросах математической физики и функционального анализа. Обзор теоремы о пополнении интеграла Лебега. Множество метрического пространства.
реферат, добавлен 02.07.2013Понятие алгебраической операции, ее характеристики и свойства, отличительные признаки и направления исследования. Свойства и изоморфизм групп. Реализация абстрактной группы как группы преобразований. Теорема о подгруппах конечной циклической группы.
реферат, добавлен 18.06.2015Особенность модификации метода выделения переменных, уменьшающая сложность получаемых промежуточных форм за счет реализации выделения группы переменных последовательностью шагов, называемых циклами. Проведение исследования получения пустого множества.
статья, добавлен 07.11.2018Основные понятия из теории групп, и классов Фиттинга. Определение классов Фиттинга и их основные свойства, F-радикалы и F-инъекторы. Произведение классов Фиттинга как средство для построения новых классов с помощью операции их радикального произведения.
дипломная работа, добавлен 19.04.2011Математическое обоснование возможности реализации транзитивной подгруппы G симметрической группы S на n символах в виде группы Галуа некоторого тринома степенной функции над полем рациональных чисел при заданных значениях n от 3 до 7 включительно.
статья, добавлен 22.10.2017Проведение исследования бинарной и унарной алгебраических операций на множестве. Особенность формализации нечеткой информации для построения математических моделей. Характеристика аксиом меры нечеткости. Основные виды метрик функциональных пространств.
лабораторная работа, добавлен 06.10.2017Особенность нахождения отношения эквивалентности на множестве А. Построение таблиц истинности для высказываний. Изучение замыкания над множеством булевой функции. Проведение исследования класса линейных функций. Нахождение максимального потока в сети.
курсовая работа, добавлен 05.12.2019