Введение в анализ и дифференциальное исчисление функции
Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.
Подобные документы
Введение в анализ и дифференциальное исчисление функции одного переменного. Поиск промежутков выпуклости и точки перегиба заданной функции. Дифференциальное исчисление функций и его приложение. Интегральное исчисление функции одного переменного.
контрольная работа, добавлен 09.09.2015Введение в анализ и дифференциальное и интегральное исчисление одного переменного. Локальные экстремумы и эскиз графика. Поведение функции вблизи точки разрыва и вычисление производной. Особенности дифференциального исчисления функций и его приложение.
контрольная работа, добавлен 08.05.2014Введение в математический анализ. Дифференциальное исчисление функций одной и нескольких переменных. Исследование характера точек разрыва для заданной функции. Определение частных производных второго порядка, интервалов выпуклости и вогнутости функции.
контрольная работа, добавлен 23.03.2022Полное исследование функции и построение ее графика с использованием дифференциального исчисления. Расчет неопределенных интегралов с использованием методов интегрирования. Определение области сходимости степенного ряда. Функции нескольких переменных.
контрольная работа, добавлен 16.01.2015Монотонность функции. Исследование стационарных точек. Локальный и глобальный экстремум. Выпуклость и перегибы графика функции. Интерполяция и аппроксимация функций. Интерполяционный полином Лагранжа. Формула Тейлора. Понятие об эмпирических формулах.
реферат, добавлен 17.01.2011Вычисление значения функции в точках, подозрительных на глобальный экстремум. Нахождение наклонной асимптоты, точек, в которых производная функции равна нулю. Определение промежутков выпуклости и точек перегиба функции. Построение эскиза графика функции.
контрольная работа, добавлен 26.04.2012Определение экстремумов, точек перегиба и асимптот функции, использование команды polyroots. Исследование функции одной, двух переменных. Вычисление неопределенного постоянного множителя, Координаты стационарных точек. Применение функции CreateMesh.
контрольная работа, добавлен 10.04.2020- 8. Функция
Развитие понятия функции. Математический анализ и его две основные части: дифференциальное и интегральное исчисления. Определение функции и графика функции. Область определения и область значений функции. Виды функций: четные, нечетные, периодические.
реферат, добавлен 16.05.2012 Введение понятия урчуктных (разрывных) функций в дифференциальное исчисление. Нули разрывной функции. Совокупность разрывных функций. Касательные с угловыми коэффициентами. Классическая теорема Ролля. Расчет производной по классической теореме Ферма.
статья, добавлен 20.05.2018Рассмотрение алгоритма полного исследования функции, теоретических результатов по каждому пункту алгоритма. Разбор стандартных примеров исследования функций и построения графиков. Определение особенностей построения параметрически заданных кривых.
методичка, добавлен 14.09.2015Изложение теории математического анализа. Обзор тем курса: предел функции; основы дифференциального исчисления; исследование функции и построение графика; функции двух переменных; неопределённый и определённый интегралы; дифференциальные уравнения; ряды.
методичка, добавлен 22.10.2014Нахождение производной функции, заданной явно, неявно или параметрически. Порядок исследования функции и построение ее графика. Методика вычисления интегралов. Частное решение дифференциального уравнения 1-го порядка. Изменение порядка интегрирования.
контрольная работа, добавлен 18.03.2012Вертикальные, наклонные и горизонтальные асимптоты графика функции. Использование правила Лопиталя для раскрытия неопределённости. Вычисление правостороннего предела. Решение квадратного уравнения. Исследование графика функции на наличие асимптот.
лекция, добавлен 09.04.2016Исчисление функций одной и нескольких переменных, его виды (дифференциальное, интегральное): правило Лопиталя, схема исследования функции и построения ее графика, скалярное поле, неопределенный интеграл. Кратные интегралы. Элементы теории векторных полей.
контрольная работа, добавлен 17.06.2014История зарождения и развития понятия о степенной функции. Основные свойства и особенности построения графиков степенных функций. Решение задач на построение графиков заданных функций. Исследование степенной функции на монотонность и ограниченность.
контрольная работа, добавлен 20.01.2018Рассмотрение возрастающих и убывающих функций, особенностей поведения функций в точке. Определение функции, непрерывной в каждой точке. Применение понятия предела функции в экономических расчетах. Свойства производной, производные высших порядков.
реферат, добавлен 13.06.2015Примеры решения типовых задач и задачи для самостоятельного решения. Область определения функции. Выяснение четности (нечетности) функции. Построение графика функции. Пределы функций, раскрытие неопределенности. Преображение графиков элементарных функций.
практическая работа, добавлен 20.12.2011Вычисление пределов и производных логарифмических функций, применение правила дифференцирования суммы. Построение графика функции, нахождение горизонтальных и наклонных асимптот. Вычисление неопределенных интегралов и дифференциального уравнения.
контрольная работа, добавлен 19.04.2016Понятие производной, её геометрический смысл. Правила дифференцирования, производная сложной функции. Дифференциал функции, логарифмическое дифференцирование, правило Лопиталя. Производные высших порядков и их применение для исследования свойств функций.
методичка, добавлен 27.09.2012Определение и экономический смысл производной. Построение касательной к графику функции. Сущность дифференцируемости и эластичности функции. Правила Лопиталя. Приближенные вычисления производной сложной и обратной функций. Таблица значений производных.
реферат, добавлен 17.01.2011Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.
лекция, добавлен 29.09.2013Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014Введение в математический анализ. Алгоритм вычисления пределов. Раскрытие неопределенностей. Классификация функций. Непрерывность функции в точке. Дифференциальное исчисление функций одной переменной. Определение и геометрический смысл дифференциала.
учебное пособие, добавлен 28.08.2017Вычисление площади фигуры с помощью двойного интеграла в полярных координатах. Расчет объема тела с помощью тройного интеграла. Исследование сходимости числового ряда. Разложение функции f(x) в ряд Фурье. Общее и частное решение дифференциального уравнени
контрольная работа, добавлен 22.01.2012Построение графика функции спроса и предложения, нахождение координаты точки равновесия. Вычисление производных. Исследование и построение графика данной функции. Вычисление неопределенного интеграла. Установление расходимости несобственного интеграла.
контрольная работа, добавлен 21.10.2010