Задача Бюффона
Биография Жоржа Луи Бюффона как французского натуралиста, биолога, математика, естествоиспытателя и писателя, обзор его знаменитых трудов. Опыт Бюффона. Особенности доказательства формулы, лежащей в основе теоретического фундамента метода Монте-Карло.
Подобные документы
Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.
курсовая работа, добавлен 23.11.2015Математическое ожидание, дисперсия, доверительная вероятность. Общая схема метода Монте-Карло, который можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Вычисление интегралов методом Монте-Карло.
курсовая работа, добавлен 28.04.2012Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.
курсовая работа, добавлен 16.05.2019Разработка методов анализа данных, предназначенных для решения конкретных прикладных задач. Изучение влияния на свойства статистических процедур анализа данных тех или иных отклонений от исходных предположений. Примеры применения метода Монте-Карло.
статья, добавлен 22.05.2017Исследование машинных систем методом имитационного моделирования (метод Монте-Карло), простые и экономные способы формирования последовательности случайных чисел. Характеристика области применения метода Монте-Карло, его достоинства и недостатки.
реферат, добавлен 18.03.2014История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.
курсовая работа, добавлен 29.08.2010Характеристика численных методов в математических расчетах. Описания методов для решения различных задач с помощью случайных последовательностей. Обзор техники моделирования случайной последовательности чисел. Практическое применение метода Монте-Карло.
доклад, добавлен 21.03.2015Метод Монте-Карло, вычисления интегралов, решения систем алгебраических уравнений высокого порядка, исследования различного рода сложных систем. Обычный алгоритм Монте-Карло интегрирования, моделирование поведения элементарных частей физической системы.
доклад, добавлен 25.11.2010Метод моделирования случайных величин с целью вычисления характеристик распределений. Влияние метода Монте-Карлона на развитие методов вычислительной математики. Математическое ожидание, дисперсия, точность оценки, доверительная вероятность и интервал.
курсовая работа, добавлен 06.03.2010Статистическое моделирование как научное направление, области его применения. Методы Монте-Карло: анализ общей схемы, достоинства, недостатки и примеры применения. Случайные числа, генераторы случайных и псевдослучайных чисел. Метод Hit-Or-Miss.
лекция, добавлен 18.07.2013Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.
курсовая работа, добавлен 31.10.2017Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.
контрольная работа, добавлен 10.01.2012Численные методы решения математических задач. Прямое статистическое моделирование при помощи получения и преобразования случайных чисел. Применение метода Монте-Карло в вычислительной аэродинамике. Разработка алгоритма для кинетических уравнений.
статья, добавлен 13.12.2013Использование метода Монте-Карло для решения математических задач при помощи моделирования случайных величин. Способы получения случайных величин. Алгоритмы получения псевдослучайных чисел. Получение псевдослучайных точек методами Неймана и Лемера.
практическая работа, добавлен 26.12.2016Применение метода Монте-Карло для моделирования переноса нейтронов в ядерных реакторах. Моделирование трехмерных систем с произвольной геометрией с использованием комбинаторного подхода. Применение программы Призма для решения линейных задач переноса.
статья, добавлен 15.01.2019Характеристика теории вероятности как неслучайного явления в науке: история её возникновения (Паскаль, Ферма, Гюйгенс); возможности; определения и основные понятия; метод "Монте-Карло"; предпосылки развития технологий, кибернетики, искусственного разума.
реферат, добавлен 11.03.2014Рассмотрение особенностей применения методов Монте-Карло с цепями Маркова в экономических исследованиях. Интуитивное обоснование алгоритма Метрополиса. Изучение гиббсорского выбора и маргинальной функции плотности двумерного нормального распределения.
статья, добавлен 04.03.2012- 18. Задача о жуках
Использование формулы Эйлера для плоской сети в задаче о механических жуках, характеристика их свойств. Определение гладкой кривой линии без точек возврата в математике. Доказательство формулы канадского математика Хонсбергера из университета "Ватерлоо".
статья, добавлен 04.05.2012 Разработка комплекса программ для обоснования безопасной работы ядерного реактора. Расчет пространственно-энергетического распределения нейтронов в элементах активной зоны. Решение кинетических уравнений с применением прецизионных алгоритмов Монте-Карло.
автореферат, добавлен 03.02.2018Основные положения численного интегрирования. Формулы левых, правых и средних прямоугольников. Метод статистических испытаний (метод Монте-Карло). Численное интегрирование методом прямоугольников. Алгебраический порядок точности численного метода.
курсовая работа, добавлен 08.02.2016Труд Аполлония Пергского о конических сечениях, его известная задача о нахождении круга и усовершенствования системы счисления. Описание окружности Аполлония и его математических трудов. Увлечение математика астрономией, переводы работ Аполлония учеными.
презентация, добавлен 11.05.2014- 22. Анри Пуанкаре
Жизнь и творчество французского математика Анри Пуанкаре, создавшего имтопологию, теорию дифференциальных уравнений, многомерный комплексный анализ, интегральные уравнения, теорию вероятностей и теорию чисел. Значимость трудов математика в современности.
реферат, добавлен 04.05.2016 Изучение биографии знаменитого французского математика и физика - Ж.Б. Фурье. Теорема о числе действительных корней алгебраического уравнения. Теория распространения тепла в твердом теле. Анализ интеграла, коэффициентов, преобразования и метода Фурье.
реферат, добавлен 22.05.2016Изучение общего курса математики студентами вузов. Сочетание необходимого теоретического материала с широким использованием методов решения основных типов задач по всем разделам курса. Изложение точных формулировок понятий, теорем и доказательств.
учебное пособие, добавлен 16.04.2014Биография великого греческого математика Эратосфена. Его знаменитые работы в математике, географии, геометрии и основание научной хронологии. Сущность метода "Решето Эратосфена". Алгоритм и принцип работы метода отсеивания простых чисел от составных.
презентация, добавлен 12.05.2016