Оценка качества уравнения парной регрессии: коэффициент детерминации, стандартная ошибка уравнения регрессии, t-критерий Стьюдента, F - критерий Фишера

Факторы влияния на экономические показатели. Использование множественной регрессии в изучении проблем спроса, доходности акций, функции издержек производства, в макроэкономических расчетах. Оценка параметров линейного уравнения множественной регрессии.

Подобные документы

  • Построение матрицы парных коэффициентов корреляции. Выведение уравнения множественной регрессии в линейной форме с полным набором факторов. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

    презентация, добавлен 30.11.2016

  • Расчет параметров линейного, степенного, показательного уравнения парной регрессии. Использование показателей корреляции и детерминации. Оценка значимости уравнения регрессии в целом с использованием общего F-критерия Фишера и t-критерия Стьюдента.

    задача, добавлен 16.05.2016

  • Рассмотрение спецификации моделей множественной регрессии, метода наименьших квадратов для стандартизованного уравнения. Отбор фактор-признаков и выбор уравнения регрессии. Методы вычисления параметров выбранного уравнения множественной регрессии.

    статья, добавлен 30.11.2016

  • Параметры уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Проверка уравнения регрессии с помощью F-критерия Фишера. Прогнозирование среднего значения показателя. Коэффициенты детерминации и средние ошибки аппроксимации.

    контрольная работа, добавлен 14.01.2015

  • Экономическая интерпретация коэффициента регрессии, порядок его расчета. Определение остаточной суммы квадратов и оценка дисперсию остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Построение графика регрессии.

    контрольная работа, добавлен 20.01.2014

  • Технология регрессионного анализа. Коэффициент линейной корреляции. Эмпирическое корреляционное отношение. Построение уравнения регрессии. Применение дисперсионного анализа для оценки качества уравнений регрессии. Коэффициент множественной детерминации.

    лекция, добавлен 10.11.2017

  • Характеристика принципа конкретных количественных и качественных взаимосвязей экономических объектов и процессов с помощью математических и статистических методов. Построение уравнения парной регрессии. Статистический анализ модели и оценка её качества.

    лекция, добавлен 22.07.2014

  • Определение параметров уравнения линейной регрессии, проверка их значимости с помощью критериев Фишера и Стьюдента. Экономическая интерпретация коэффициента регрессии; оценка дисперсии остатков. Относительные ошибки аппроксимации прогнозных моделей.

    контрольная работа, добавлен 18.09.2013

  • Рассмотрение понятия спецификации и параметризации уравнения регрессии. Оценка уравнения, анализ статической значимости коэффициентов множественной регрессии. Расчет доли объясненной дисперсии, проверка гипотезы о наличии автокорреляции остатков.

    контрольная работа, добавлен 05.03.2016

  • Определение наилучшего варианта уравнения парной регрессии по значению коэффициента корреляции. Оценк адекватности уравнения регрессии. Составление таблицы корреляционно-регрессионного анализа. Зависимость индекса Лернера от рыночной доли фирмы.

    контрольная работа, добавлен 21.10.2017

  • Ранжирование факторов по степени их влияния на результат на основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности. Нахождение коэффициентов парной, частной, множественной корреляции, коэффициента множественной детерминации.

    контрольная работа, добавлен 03.06.2015

  • Определение тесноты связи и оценка существенности уравнения регрессии. Виды нелинейных регрессионных моделей, расчет их параметров. Типовые задачи обработки статистических данных. Сущность математического описания связи. Параметры линейной регрессии.

    курсовая работа, добавлен 29.12.2011

  • Характеристика целей эконометрического моделирования. Линейная модель парной регрессии и корреляции. Исследование особенностей системы эконометрических уравнений. Основные аспекты отбора факторов при построении уравнения множественной регрессии.

    курс лекций, добавлен 08.02.2015

  • Методика определения значений описательных статистик. Понятие среднего арифметического нескольких чисел. Расчет парных и частных коэффициентов корреляции. Порядок составления и разрешения уравнения множественной регрессии в стандартизованном масштабе.

    контрольная работа, добавлен 20.05.2015

  • Овладение способами выбора модельного уравнения нелинейной регрессии. Рассмотрение характера расположения точек в корреляционном поле. Расчет параметров уравнения, проверка его надежности. Построение кривой нелинейной регрессии в системе координат.

    лабораторная работа, добавлен 21.01.2015

  • Характер расположения точек в корреляционном поле. Построение моделей линейной регрессии для несгруппированных данных. Оценка надежности коэффициента корреляции, адекватности уравнения регрессии. Коэффициент детерминации, его смысловое значение.

    лабораторная работа, добавлен 21.01.2015

  • Виды связи между признаками явлений. Уравнение парной (простой) и множественной (многофакторной) регрессии. Понятие "теснота связи". Определение F-критерия Фишера для парной регрессии. Сравнение теоретического значения t-критерия Стьюдента с табличным.

    лекция, добавлен 25.08.2013

  • Оценка коэффициентов линейной регрессии по методу наименьших квадратов. Расчет доверительных интервалов для теоретических коэффициентов регрессии. Оценка параметров модели с распределенным лагом. Определения коэффициентов, входящих в уравнения регрессии.

    контрольная работа, добавлен 20.05.2012

  • Построение линейной модели множественной регрессии, оценка адекватности построенного уравнения регрессии. Расчет стандартизованных коэффициентов модели. Распределение стран по кластерам, соотвествующим уровню жизни населения, построение диаграмм.

    контрольная работа, добавлен 11.12.2019

  • Использование графического метода для наглядного изображения формы связи между изучаемыми экономическими показателями. Линейная парная регрессия и метод наименьших квадратов. Оценка качества уравнения регрессии с помощью ошибки абсолютной аппроксимации.

    контрольная работа, добавлен 09.09.2014

  • Построение моделей линейной регрессии для сгруппированных данных по методу наименьших квадратов и с использованием коэффициента линейной корреляции. Оценка надежности уравнения регрессии. Распределение статистической выборки в корреляционном поле.

    лабораторная работа, добавлен 21.01.2015

  • Статистический анализ уравнения регрессии, формула определения критерия Фишера. Проверка коэффициентов на значимость, вычисление частных коэффициентов детерминации и эластичности. Анализ регрессионного уравнения, использование преобразованной матрицы.

    контрольная работа, добавлен 05.04.2020

  • Вычисление значения линейного коэффициента корреляции и оценка с его помощью тесноты и направления корреляционной связи между двумя признаками в случае наличия между ними линейной зависимости. Построение однофакторного парного уравнения регрессии.

    методичка, добавлен 07.10.2014

  • Уравнение парной регрессии. Расчет линейного коэффициента парной корреляции, параметров линейного и экспоненциального трендов. Оценка статистической значимости и параметров уравнения с помощью t-критерия. Оценка надежности уравнения с помощью F-критерия.

    контрольная работа, добавлен 18.06.2014

  • Расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Оценка статистической значимости параметров регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента. Расчет ошибки прогноза и доверительного интервала.

    контрольная работа, добавлен 15.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.