Численные методы решения уравнений в частных производных
Рассмотрение методов исследования устойчивости разностных схем для линейных эволюционных уравнений в частных производных (гиперболического и параболического типов). Численное решение дифференциальных уравнений в частных производных параболического типа.
Подобные документы
- 1. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 - 2. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице.
дипломная работа, добавлен 27.02.2020 Рассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения.
реферат, добавлен 18.05.2016Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018Методы решения уравнений в частных производных, а также анализ полученных результатов, используемые основные понятия и методы. Параметры разностных схем, их структура и назначение. Вариационный принцип Лагранжа и Гамильтона, их сравнительное описание.
контрольная работа, добавлен 31.10.2014Аналитические методы решения уравнений математической физики в частных производных. Численные методы решения уравнений матфизики. Дискретизация расчетной области, формирование матрицы неизвестных температур системы линейных уравнений, построение изотерм.
курсовая работа, добавлен 01.04.2022Понятие и типы погрешности: относительная и абсолютная, их определение. Численные методы решений трансцендентных и алгебраических уравнений. Сущность интегрирования. Решение начально-краевых задач для дифференциальных уравнений в частных производных.
учебное пособие, добавлен 02.05.2013Способ построения бикомпактных разностных схем четвертого порядка аппроксимации по пространственной переменной на минимальном (двухточечном) шаблоне для уравнений и систем уравнений гиперболического типа. Схема сквозного расчета разрывных решений.
автореферат, добавлен 25.07.2018- 9. Определение функций источника систем уравнений составного типа для некоторых начально-краевых задач
Решение задачи идентификации функции источника одномерной системы параболического и эллиптического уравнений в частных производных второго порядка. Исследование задачи Коши, второй краевой и обратных задач для эволюционных систем составного типа.
статья, добавлен 29.04.2018 Разностные методы решения краевых задач для уравнений в частных производных. Методы решения сеточных уравнений - специфическая система линейных алгебраических уравнений. Аппроксимация. Теорема о сходимости разностной схемы. Метод верхней релаксации.
курсовая работа, добавлен 06.05.2015Значение дифференциальных уравнений для эффективных моделей экономической динамики. Описание квазилинейного уравнения первого порядка в частных производных. Характеристика его многомерного случая и методов нахождения общего решения этого уравнения.
контрольная работа, добавлен 16.09.2015Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.
презентация, добавлен 30.10.2013Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.
контрольная работа, добавлен 12.04.2014Общая характеристика частных производных и частных дифференциалов функций со многими переменными. Геометрический смысл частных производных и полного дифференциала. Основные правила вычисления дифференциалов и понятие частных производных высших порядков.
курсовая работа, добавлен 23.04.2011Исследование системы на совместность методом Гаусса. Решение системы линейных алгебраических уравнений двумя методом Крамера и средствами матричного исчисления. Решение пределов, дифференциальных уравнений, определение производных функций и интегралов.
контрольная работа, добавлен 09.04.2012Численно-аналитическое моделирование процессов теплопроводности. Рассмотрение несимметричных граничных условий первого и второго рода. Методика аппроксимационного преобразования уравнений в частных производных к системе дифференциальных уравнений.
статья, добавлен 25.08.2016Определение понятий линейных и квадратных уравнений. Принцип решения данных уравнений: описание общих и частных случаев. Примеры и объяснение этапов решения, составление ответа. Решение линейных и квадратных уравнений с дополнительными условиями.
реферат, добавлен 09.02.2009Ознакомление с методами обозначения частной производной функции. Определение условий дифференцирования функции. Рассмотрение символики для обозначения частных производных. Исследование теоремы о частных производных. Анализ сущности смешанных производных.
лекция, добавлен 13.04.2015Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.
курс лекций, добавлен 26.09.2017Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.
курс лекций, добавлен 24.04.2009Задача Шварца для вектор-функций, аналитических по Дуглису. При выполнении определенных условий на матрицу она сведена к задаче Дирихле для равносильной ей системы однородных линейных дифференциальных уравнений в частных производных второго порядка.
статья, добавлен 31.05.2013Алгоритмы решения неоднородных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах для различных типов правых частей уравнений. Особенности, возникающие при решении уравнений в связи с существованием делителей нуля.
статья, добавлен 29.01.2019Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Теорема С.В. Ковалевской о существовании и единственности решения уравнения в частных производных. Доказательство положения об общем определении квазилинейного равенства. Способ построения задачи Коши с помощью геометрического смысла характеристик.
курсовая работа, добавлен 26.02.2014