Рівняння площини у просторі

Загальне рівняння площини: якщо в просторі задано довільну площину і фіксовану прямокутну декартову систему координат, то площина визначається в цій системі координат рівнянням першого ступеня. Колінеарні вектори. Рівняння площини у відрізках на осях.

Подобные документы

  • Визначення поняття перпендикуляра до площини, похилої, проекції похилої на площину та відстані від точки до площини. Встановлення взаємозв’язку між довжинами похилих, проведених з однієї точки до площини, а також довжинами їхніх проекцій на площину.

    лекция, добавлен 02.06.2019

  • Перетворення координат з використанням конформних відображень відповідних областей на круг, одержання множини розв’язків рівняння Гельмгольца у системах координат. Побудування розв’язки задач для рівняння у площині з еліптичним отвором та півплощині.

    статья, добавлен 27.07.2016

  • Процес ортогонального проектування на площину прямої. Особливості проектування прямої на три площини проекцій, відносне положення точки і прямої. Характеристика та знаходження сліду прямої, визначення кута нахилу прямої до горизонтальної площини кута.

    реферат, добавлен 04.11.2015

  • Новий метод розв’язування кубічного алгебраїчного рівняння. Розрахунок рівнянь, розміщених на комплексній площині, що позначають вершини рівностороннього трикутника. Перетворення вигляду рівняння, якщо умова не виконується і всі корені рівняння різні.

    лекция, добавлен 24.01.2014

  • Аналіз взаємозв’язку між довжинами похилих, проведених з однієї точки до площини, і довжинами їхніх проекцій на площину. Застосування теореми про властивості перпендикуляра і похилої. Розв’язання найпростіших задач на похилу та її проекцію на площину.

    разработка урока, добавлен 08.06.2019

  • Диференціальні рівняння першого порядку та рівняння з відокремленими змінними, однорідні та лінійні диференціальні рівняння. Рівняння, які зводяться до лінійних. Рівняння Бернуллі та Ріккаті. Рівняння в повних диференціалах. Інтегруючий множник.

    лекция, добавлен 08.08.2014

  • Поняття однорідного рівняння та функції, сутність однорідного диференціального рівняння. Задача про параболічний прожектор: мередіальний переріз поверхні обертання та заміна змінної розв’язання диференціального рівняння з відокремлюваними змінними.

    лекция, добавлен 01.05.2014

  • Встановлення умов і вигляду розв'язку асимптотичної задачі для еволюційного рівняння з неоднорідною частиною у вигляді многочлена та розв'язності деяких обернених (багатоточкових) задач для рівняння з параметрами у рефлексивному банаховому просторі.

    автореферат, добавлен 28.06.2014

  • Поняття звичайного диференціального рівняння, існування та єдність його розв'язку. Метод ламаних Ейлера. Наближене розв'язання диференціального рівняння І порядку. Загальний розв'язок рівняння у'=у+3 і задача Коші для рівняння з початковою умовою: у(0)=1.

    контрольная работа, добавлен 06.10.2010

  • Розгляд положень понятійного апарату геометричних відображень картографічних об’єктів. Характеристика аналітичних способів візуалізації площини на поверхні. Заходи управління відображеннями графічних масивів на основі просторових координат точок.

    автореферат, добавлен 10.08.2014

  • Поняття диференціального рівняння, задача, ознаки і теорема О.Л. Коші, її геометричний зміст. Ознаки та приклади загального або частинного розв’язку (інтеграли) диференціального рівняння першого порядку та з відокремленими і відокремлюваними змінними.

    лекция, добавлен 01.05.2014

  • Встановлення критеріїв існування та єдиності обмежених (за нормою) розв’язків різницевого рівняння загального вигляду на напівосі, різницевого рівняння з періодичним операторним коефіцієнтом, узагальненого двопараметричного різницевого рівняння.

    автореферат, добавлен 24.06.2014

  • Характеристика основних відмінностей координатної площини від звичайної. Особливість побудови системи координат. Вивчення алгоритму створення графіків температури та руху. Дослідження виміру температурного режиму через кожні дві години упродовж доби.

    конспект урока, добавлен 17.09.2018

  • Поняття лінійних диференціальних рівнянь першого порядку, особливості їх розв’язання за методом І. Бернуллі (добуток двох функцій). Метод варіації та інтегрування при розв’язанні лінійного диференціального рівняння першого порядку та рівняння Я. Бернуллі.

    лекция, добавлен 01.05.2014

  • Лінійне тригонометричне рівняння. Зведення тригонометричного рівняння до алгебраїчного. Розклад рівняння на множники. Рівність однойменних функцій. Перетворення добутків на суми, сум на добутки. Системи тригонометричних рівнянь. Вправи для розв’язування.

    лекция, добавлен 24.01.2014

  • Основні найпростіші тригонометричні та лінійні рівняння. Зведення тригонометричного рівняння до алгебраїчного. Розкладання рівняння на множники. Рівність однойменних функцій. Системи тригонометричних рівнянь. Рішення, засновані на обмеженості функцій.

    лекция, добавлен 26.01.2014

  • Побудування розв’язки задач Коші для нестаціонарних параболічних рівнянь із суттєво нескінченновимірними операторами в банаховому просторі функцій, заданих на нескінченновимірному сепарабельному гільбертовому просторі. Докази теорем та зауваження.

    автореферат, добавлен 01.08.2014

  • Комплексне креслення площини. Способи перетворення проекцій. Приклад написання українських літер згідно з ГОСТ 2.304-81. Спосіб обертання навколо вісі, перпендикулярної до площини проекцій. Побудування перерізу похилого конуса площиною, його розгортка.

    методичка, добавлен 16.07.2017

  • Метод складання диференціального рівняння у частинних похідних, розв’язком якого має бути поверхня у просторі, що дозволить визначати відбивальні поверхні з точковими фокусами. Алгоритми розв’язання рівняння з метою визначення квазіеліпса на площині.

    автореферат, добавлен 10.08.2014

  • Поняття про криві другого порядку. Коло та його рівняння. Еліпс, його рівняння та властивості. Гіпербола та її рівняння. Парабола та її рівняння. Властивості параболи. Полярні та параметричні рівняння кривих другого порядку. Гіперболічний косинус й синус.

    лекция, добавлен 08.08.2014

  • Поняття, означення й теорема про достатні умови існування і єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Випадки, коли рівняння можна проінтегрувати. Загальний метод введення параметра, неповні рівняння. Розв’язок задачі Коші.

    реферат, добавлен 06.11.2017

  • Основні поняття та означення диференціального рівняння першого порядку, теорема про достатні умови існування та єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Загальний метод введення параметра. Розв’язок неповних рівнянь.

    контрольная работа, добавлен 13.04.2011

  • Визначення характеристик резонансних енергетичних зон, поза якими стаціонарне рівняння Шредінгера з квазіперіодичним потенціалом має обмежені розв’язки. Розповсюдженні результатів, одержаних для рівняння, на випадок квазіперіодичної системи Дірака.

    автореферат, добавлен 24.07.2014

  • Абсорбер як технологічний об`єкт керування. Рівняння матеріальних балансів. Рівняння в безрозмірному виді змінних. Рівняння в канонічній формі і в формі Коші. Перетворення за Лапласом змінної часу. Передатні функції за каналами збурення і керування.

    лекция, добавлен 28.02.2016

  • Засвоєння змісту теореми Вієта для зведеного квадратного рівняння та для квадратного рівняння загального виду. Формування вміння відтворювати вивчені твердження, використовувати їх для розв'язування завдань. Визначення коефіцієнтів квадратного рівняння.

    конспект урока, добавлен 21.10.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.