К вопросу о логическом обосновании понятия "действительное число"

Вещественное число порядка как класс эквивалентности, если между элементами этих множеств можно установить взаимно однозначное соответствие. Построение вещественных чисел исходя из рациональных чисел согласно теории немецкого ученого Георга Кантора.

Подобные документы

  • История возникновения счета и чисел. Число, как основное понятие математики. Исследование множеств чисел с применением кругов Эйлера. Множество натуральных чисел и их свойства. Дроби в Древнем Египте. Четыре действия арифметики. Десятичные дроби.

    реферат, добавлен 21.03.2013

  • Понятие множества, операции и математические понятия в теории множеств. Суть и способы математического доказательства. Отношения эквивалентности и порядка на множестве. Теоретико-множественный подход в построении множества целых неотрицательных чисел.

    курс лекций, добавлен 06.08.2017

  • История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.

    реферат, добавлен 25.02.2016

  • Построение схемы усовершенствованного 16-разрядного генератора псевдослучайных чисел, в котором число 0 включено в последовательность случайных чисел посредством выбора четырех сдвиговых регистров влево, выходы которого выдают число на выходную шину.

    контрольная работа, добавлен 24.06.2010

  • Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.

    статья, добавлен 03.03.2018

  • Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.

    учебное пособие, добавлен 16.06.2015

  • Предложения решений в целых числах уравнений теории чисел. Доказательство отсутствия решений в целых числах уравнения теоремы Ферма. Предложение доказательства бесконечности регулярных простых чисел. Делимость числителей чисел. Простое число Мерсена.

    статья, добавлен 03.03.2018

  • Закон, по которому группе упорядоченных действительных чисел ставится в соответствие одно число. График функции - поверхность в пространстве. Виды множеств точек. Понятия линии уровня, предела, непрерывности. Частные производные. Уравнение плоскости.

    презентация, добавлен 21.09.2017

  • Характеристика понятия множества, описание операций над множествами. Конечные и бесконечные множества. Счетные и несчетные множества. Анализ рациональных чисел как таких чисел, которые можно записать в виде дроби с целыми числителем и знаменателем.

    реферат, добавлен 22.11.2018

  • Нахождение делителей и кратных чисел. Ознакомление с таблицей простых чисел. Разложение чисел на простые множители. Определение взаимно простых чисел. Правило нахождения наименьшего общего кратного. Сложение и вычитание дробей с разными знаменателями.

    разработка урока, добавлен 29.09.2017

  • Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.

    лекция, добавлен 22.12.2013

  • Основные этапы зарождения и развития чисел в человеческом обществе, оценка их роли и значения. Особенности численной системы племени майя, Древнего Египта, арабских и славянских народов. Число судьбы человека, его определение. Значение чисел по Пифагору.

    презентация, добавлен 21.01.2013

  • Доказательство изооморфности векторных пространств. Отображение для всевозможных наборов чисел. Линейные, нулевые и тождественные преобразования. Однозначное соответствие между матрицами и всеми линейными преобразованиями векторного пространства.

    лекция, добавлен 30.04.2014

  • Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.

    реферат, добавлен 15.12.2016

  • Исследование различных систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Характеристика и доказательства теорем Ферма-Эйлера, Адольфа Гурвица и приложение к ней (Фердинанда Георга Фробениуса).

    курсовая работа, добавлен 09.04.2012

  • Ознакомление с историей возникновения и областью применения цепных дробей. Изучение приближения действительных чисел (рациональных дробей с заданным ограничением для знаменателей, бесконечной последовательности рациональных чисел, наилучших приближений).

    курсовая работа, добавлен 01.07.2014

  • Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.

    презентация, добавлен 05.10.2015

  • Применение персональных компьютеров к решению проблем выявления закономерности распределения простых чисел и подтверждения гипотезы Эйлера–Гольдбаха. Доказывание существования бесконечного множества простых чисел. Вычисление таблицы простых чисел.

    статья, добавлен 26.04.2019

  • Понятие, элементы и виды множества. Круги Эйлера. Разбиение на части. Декартово произведение множеств. Число элементов в объединении и разности конечных множеств. Способы решения текстовой задачи. Аксиоматическое построение системы натуральных чисел.

    курс лекций, добавлен 26.11.2016

  • Правила аксиоматического построения математических теорий. Аксиоматическое построение системы натуральных чисел. Аксиомы Пеано, метод математической индукции. Умножение целых неотрицательных чисел в количественной теории, таблица и законы умножения.

    реферат, добавлен 10.01.2017

  • Современные рассуждения, демонстрирующие противоречивость наивной теории множеств. Предложенный Б. Расселом "парадокс Тристрама Шенди". Нетривиальные следствия аксиомы выбора. Рассмотрение рядов квадратов натуральных чисел, степеней двойки, факториалов.

    статья, добавлен 15.02.2019

  • История появления проблем простых чисел. Асиптотический Закон рапределения простых чисел в натуральном ряду. Роль простых чисел в математике. "Тернарная" проблема Гольдбаха. Список проблем для Теории чисел, аналогичный списку Гильберта, его описание.

    статья, добавлен 24.08.2020

  • Биография Пифагора и его школа. Четно-нечетные числа как числа, которые будучи разделены пополам, не делятся. Таблица десяти чисел. Совершенное число как число, сумма дробных частей которого равна самому числу. Влияние пифагорейских гетерий на политику.

    реферат, добавлен 06.03.2010

  • Значение и применение теории бесконечного множества простых чисел. Основы установления сравнительной количественной оценки множеств. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов, численными методами.

    статья, добавлен 26.01.2019

  • Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.

    курс лекций, добавлен 28.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.