Теория игр
Изучение понятий теории игр. Порядок составления платежной матрицы. Смешанное расширение матричной игры. Доминируемые стратегии в теории игр. Процесс создания математической игровой модели. Матричная игра в чистых стратегиях, ее взаимосвязь с природой.
Подобные документы
Игра как математическая модель конфликтной ситуации. Основные понятия теории игр, ее ключевые понятия. Парные матричные игры с нулевой суммой. Характеристика методов решения матричных игр. Выбор пары альтернатив. Статистические игры (игры с "природой").
презентация, добавлен 20.09.2017Проверка платежной матрицы седловой точки. Решение игры в чистых стратегиях. Решение задачи геометрическим методом. Отложение по оси абсцисс отрезка в декартовой системе координат. Максиминная оптимальная стратегия игрока. Доминирующие строки и столбцы.
контрольная работа, добавлен 19.03.2013- 3. Теория игр
Решение конфликтной ситуации двух лиц в чистых и смешанных стратегиях аналитическим методом, понизив порядок платежной матрицы. Математические ожидания выигрыша первого игрока при его смешанной стратегии для обеих чистых стратегий второго игрока.
контрольная работа, добавлен 27.01.2015 Характеристика математической модели реальной конфликтной ситуации. Особенность формализации игры. Главный анализ нижней и верхней цены игрового процесса. Седловая точка в платежной матрице. Решение системы в смешанных стратегиях геометрическим методом.
реферат, добавлен 17.06.2015Теория игр - раздел математики, изучающий конфликтные ситуации на основе их математических моделей. Оптимальная стратегия для каждого игрока. Признаки классификации игры. Решение матричных игр в чистых и смешанных стратегиях. Основная теорема теории игр.
контрольная работа, добавлен 24.10.2014Математическое определение верхней и нижней цены игры в чистых стратегиях. Расчет цены игры при оптимальных смешанных стратегиях игроков при помощи нулевой суммы и платежной матрицы. Сведение оптимальных стратегий к задаче линейного программирования.
лекция, добавлен 20.03.2013Сущность и содержание идеи создания математической теории конфликта – теории игр, основные этапы ее формирования и современное состояние. Понятие и базовые признаки игры. Интерпретация данной теории отечественными и зарубежными учеными, разница подходов.
реферат, добавлен 27.02.2011Матричные антагонистические игры, схема принятия решений. Основная теорема теории матричных игр (по Дж. фон Нейману). Теорема о принципе максимина. Игры с нулевой суммой в чистых стратегиях. Вычисление оптимальных стратегий на примере решения задач.
курсовая работа, добавлен 28.02.2016Решение игры в чистых стратегиях. Построение платежных матриц. Понятие и поиск седловой точки. Определение гарантированного и вероятностного выигрыша. Применение метода Гаусса при решении системы неравенств. Минимизация математического ожидания игрока.
контрольная работа, добавлен 17.12.2016Понятие об игровых моделях разрешения конфликтной ситуации. Виды и основные правила формализованной игры. Специфика определения оптимальной стратегии для каждого игрока. Алгоритм определения нижней и верхней цен игры, заданной платежной матрицей.
реферат, добавлен 12.07.2015Характеристика матричных игр с нулевой суммой. Анализ платежной матрицы игры. Описание нижней и верхней цены игры, принципа минимакса. Игры с седловой и безседловой точкой. Игры, повторяемые многократно. Аналитический метод решения игр различного типа.
учебное пособие, добавлен 17.06.2015Решение игры с природой по критериям Гурвица, Лапласа, Сэвиджа и Вальда. Особенности построения матрицы выигрышей, потерь и риска. Определение терминов "максиминный" и "минимаксный" критерий. Обоснование выбора оптимальной стратегии решения задачи.
контрольная работа, добавлен 15.01.2013- 13. Теория игр
Изучение формальных моделей принятия оптимальных решений в условиях конфликта. Конкретизация объектов конфликта и связей между ними в теории игр. Рассмотрение примеров бескоалиционной игры. Антагонистические и позиционные игры в современной теории игр.
реферат, добавлен 22.06.2016 Понятие теории игр как теории математических моделей принятия решений в условиях неопределенности, столкновения, конфликтных ситуациях. Неформальное описание игр и некоторые примеры: игры двух лиц с нулевой суммой, с седловой точкой. Смешанные стратегии.
курсовая работа, добавлен 21.10.2013Алгоритм получения оптимального решения игры, не имеющей седловой точки, при помощи метода чередования чистых стратегий. Геометрическая интерпретация игры 2х2. Порядок и особенности определения оптимальных стратегий игроков геометрическим методом.
реферат, добавлен 12.07.2015Изучение игры в нормальной форме, участниками которой являются преподаватель и учащийся высшего учебного заведения. Рассмотрение процесса формирования матрицы выигрышей. Анализ теории игр — математического метода изучения оптимальных стратегий в играх.
статья, добавлен 20.05.2017Алгоритм формирования матрицы абсолютных частот. Формирование матрицы условных и безусловных вероятностей. Взаимосвязь системной меры целесообразности информации со статистикой. Получение матрицы знаний. Реализация модели в аналитической системе "Эйдос".
статья, добавлен 26.04.2017Предмет и задачи теории игр. Принципы линейного программирования и сферы их практического применения. Приведение матричной игры к задаче линейного программирования. Методы и этапы решения матричных игр условием их положительной и произвольной цены.
курсовая работа, добавлен 28.05.2014Изучение одного из возможных подходов к системному обобщению математического понятия множества, а именно подхода, основанного на системной теории информации. Использование теории как основы для обобщения и создания "математической теории систем".
статья, добавлен 26.04.2017Описание истории создания фундаментальной математической теории − теории групп – французским математиком Э. Галуа. Исследование проблемы разрешимости алгебраических уравнений, вопрос о существовании их решений в радикалах. Сущность теории групп Галу
статья, добавлен 26.04.2019Некооперативная игра, в которой участвуют два игрока, выигрыши которых противоположны. Реализация решения антагонистической игры методом обратной матрицы в программной среде MATLAB. Оптимальная стратегия A и B и значение цены игры в решении программы.
курсовая работа, добавлен 23.04.2017- 22. Теория графов
Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.
методичка, добавлен 24.03.2015 Сведения из теории вероятностей и случайных процессов. Броуновское движение и процесс Пуассона. Простые инвестиционные стратегии и стохастические интегралы. Семимартингалы, расширение классов интегралов. Понятие о квадратической вариации и ковариации.
методичка, добавлен 08.09.2015Исследование теории вероятности математиками Тарталья и Кардано, расчет вариантов выпадения очков. Ферма и Паскаль - основатели математической теории вероятности. Введение понятия математического ожидания Гюйгенсом. Области применения теории вероятности.
реферат, добавлен 30.06.2011- 25. Теория игр
Понятие и отличительные черты нестратегической теории игр, ее характеристика и применение. Значение и описание кооперативной теории игр. Специфика и использование антагонистических и позиционных игр. Решение стандартной задачи линейного программирования.
реферат, добавлен 22.05.2015