История числа Пи

Пи - буква греческого алфавита, применяемая в математике для обозначения отношения длины окружности к диаметру. Первый шаг в изучении свойств числа Пи, сделанный Архимедом. Вычисление периметра правильного 96-угольника. Формула длины окружности.

Подобные документы

  • Анализ изучения важнейшей математической константы, которая выражает отношение длины окружности к ее диаметру. Практическое применение числа "Пи". Проведение исследования современных представлений о культуре. Взаимосвязь пирамиды Хеопса и числа "Пи".

    презентация, добавлен 05.11.2019

  • "Пи" - математическая константа, равная отношению длины окружности к длине её диаметра. Методы определения значения числа. Анализ математических формул древних ученных: Архимеда, Людольфа ван Цейлена. Вычисление знаков после запятой у числа "Пи".

    доклад, добавлен 31.01.2018

  • Изучение понятия окружности, радиуса, круга, хорды и диаметра. Исследование свойства длины окружности, признаков и свойств касательной, проходящей через одну точку. Характеристика особенностей центрального и вписанного углов, связанных с окружностью.

    презентация, добавлен 15.04.2012

  • Число пи как отношение длины окружности, как траектории движения материальной точки вокруг силового центра, к ее диаметру, история его определения. Сущность и главные принципы физического метода определения данного численного значения, его обоснование.

    статья, добавлен 20.10.2013

  • Систематизация и объединение знаний по геометрии. Основные теоремы об описанной и вписанной окружности, их доказательства. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности и решение с их помощью задач.

    реферат, добавлен 30.10.2010

  • Доказательство возможности построения круга, равновеликого по площади квадрату с точностью на восемь знаков общепринятого числа "пи". Выражение длины окружности прямым отрезком. Решение математической задачи "кругатура квадрата" геометрическим способом.

    статья, добавлен 03.03.2018

  • Методика деления окружности с высокой точностью на 7 и 9 равных частей, отличная от существующих в практике способов. Графические определение длины дуги – равноделителя. Определение величины хорды, разделяющей окружность на равные семь и девять частей.

    статья, добавлен 30.07.2018

  • Ориентированные, неориентированные и смешанные графы. Понятие деревьев и их основные свойства, связность вершин, ацикличность. Определения путей в графе. Решение задачи по определению числа путей заданной длины, составление компьютерной программы.

    курсовая работа, добавлен 18.12.2014

  • Общее понятие и признаки комплексного числа. Тригонометрическая форма комплексного числа. Произведение двух комплексных чисел, формула его вычисления. Корни n-ой степени комплексного числа. Действительная и комплексная степень комплексного числа.

    реферат, добавлен 21.08.2017

  • Рассмотрение Теоремы Фейербаха и теоремы Эйлера об окружности девяти точек. Ознакомление с историей ее доказательства и названия. Построение прямой Эйлера и описанной окружности. Изучение свойств окружности Эйлера, нахождение ее центра и радиуса.

    презентация, добавлен 08.09.2014

  • Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательство некоторых основных планиметрических теорем: длины отрезка, коллинеарности трех точек, четырех точек одной окружности, правильного треугольника.

    курсовая работа, добавлен 22.04.2011

  • Концепция иррациональных чисел в античной математике. Принятие таких понятий как ноль, отрицательные числа, целые и дробные числа в средние века. Появление комплексных чисел в Новое время. Доказательство иррациональности числа Пи Ламбертом, Лежандром.

    реферат, добавлен 08.02.2017

  • Определение окружности как геометрической фигуры, состоящей из всех точек плоскости, расположенных на заданном расстоянии от её центра. Центр, радиус, хорда и диаметр окружности. Построение окружности, перпендикулярных прямых и угла, равного данному.

    презентация, добавлен 04.12.2012

  • Рассмотрение нового вида ромбической мозаики на правильных многоугольниках. Расчет общего числа ромбов и половинок ромбов для нечетных многоугольников. Виды вписанных ромбов в большую часть n-угольника. Формула для вычисления числа ромбов по видам.

    статья, добавлен 04.05.2012

  • Площадь кругового сегмента, стянутого хордой. Длина гипотенузы, лежащей внутри окружности. Площадь фигуры, ограниченной сторонами угла и дугой окружности, заключенной между ними. Уравнение окружности, проходящей через точку и касающейся осей координат.

    контрольная работа, добавлен 01.12.2012

  • Использование основных инструментов динамической геометрической среды GeoGebra. Теоретические сведения из школьного курса геометрии. Вписанные и центральные углы. Вписанные и описанные окружности. Решение задач на окружности с применением GeoGebra.

    дипломная работа, добавлен 03.05.2018

  • Вписанная, описанная окружности, взаимное расположение прямой и окружности, площади фигур, свойства прямоугольного треугольника. Задачи с окружностью, описанной около треугольника, вписанной в треугольник, описанной и вписанной около четырехугольника.

    реферат, добавлен 21.06.2009

  • Натуральные числа, их формальное и аксиоматическое определение. История науки, изучающей чистые, формальные свойства натуральных чисел. Системы счисления, методы обозначения и теория чисел. Арифметические операции и расширение до целых чисел и дальше.

    реферат, добавлен 25.12.2014

  • Изучение малых и больших старинных мер длины. Рассмотрение мер длины стран Европы, используемых на Руси. Сравнение старинных мер измерения с метрическими мерами. Примеры мер длины в произведениях русских поэтов и писателей, пословицах и поговорках.

    реферат, добавлен 22.04.2019

  • Значение в метрических мерах наиболее часто применяемых древнерусских мер длины: сажень, аршин, локоть, пядь, вершок, фут. Известные русские поговорки, связанные с мерами длины Древней Руси. Верста как самая крупная единица длины в Древней Руси.

    доклад, добавлен 02.02.2012

  • Методика формування уявлення про суть поняття "протилежні числа". Способи знаходження й правильного запису числа, протилежного до даного. Розв’язувати рівнянь, що передбачають застосування поняття числа, протилежного до даного. Приклади протилежних чисел.

    конспект урока, добавлен 19.09.2018

  • Разложение общей формулы оберквадратов на множители. "Плохие" и "хорошие" числа. Вычисление разности между двумя последовательными числами. Вычеты по модулю 5 при умножении. Остатки от деления при возведении в степень. Определение наибольшей длины цикла.

    презентация, добавлен 16.03.2014

  • Измерение длины в древности. Старинные русские меры длины; пословицы и поговорки, в которых они упоминаются. Перевод старинных мер в современные единицы измерения. Использование старинных мер. Выражение роста одноклассников через разные единицы длины.

    реферат, добавлен 01.04.2023

  • Изучение связи противоречия с идеей бесконечного числа в математике. Вычисление пределов, асимптотические обозначения в уравнениях и эквивалентные бесконечно малые функции. Использование выражение, содержащее асимптотические равенства теории алгоритмов.

    курсовая работа, добавлен 28.05.2014

  • Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательству некоторых основных планиметрических теорем (отрезок; параллельность и перпендикулярность; углы и площади; треугольники; прямые и окружности).

    курсовая работа, добавлен 31.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.