Об одной задаче со смещениями в граничных условиях
Задача для классического линейного гиперболического уравнения в прямоугольной характеристической области, ее решение с помощью редукции к системе уравнений Фредгольма второго рода, разрешимость которой устанавливается на основе метода априорных оценок.
Подобные документы
- 1. Об одной нелокальной задаче для гиперболического уравнения с интегральными условиями первого рода
Анализ нелокальной задачи для гиперболического уравнения с интегральными условиями первого рода. Метод, позволяющий свести поставленную задачу к задаче с интегральным условием второго рода. Доказательство существования единственного обобщенного решения.
статья, добавлен 31.05.2013 Разработка способа редукции задач с нормальными производными в граничных условиях к задачам Гурса. Построение картины их разрешимости. Для уравнения Лиувилля построены в явном виде решения задач с граничными условиями первого, второго и третьего рода.
автореферат, добавлен 17.12.2017Сущность метода определителей Фредгольма. Пример нахождения резольвенты ядра с помощью рекуррентных соотношений. Алгоритм решения интегрального уравнения методом последовательных приближений. Исследование особенностей интегральных уравнений Фредгольма.
курсовая работа, добавлен 17.06.2013Исследование нелокальной задачи для вырождающегося уравнения гиперболического типа в характеристической области, условия которой содержат обобщенные операторы дробного интегродифференцирования на характеристиках. Доказательство однозначной разрешимости.
статья, добавлен 31.05.2013- 5. Об одной нелокальной краевой задаче для гиперболического уравнения, вырождающегося внутри области
Решение гиперболических и однородных интегральных уравнений методом последовательных приближений, нахождение членов функциональной последовательности. Доказательство Леммы. Нелокальные задачи для уравнений смешанного типа с сингулярными коэффициентами.
статья, добавлен 15.06.2015 Способ доказательства существования и единственности решения краевой задачи для уравнения третьего порядка с кратными характеристиками методом интегралов энергии и методом эквивалентной редукции к интегральному уравнению Фредгольма второго рода.
статья, добавлен 30.09.2012Характеристика интеграла и производной Римана-Лиувилля дробного порядка, интегрального уравнения Фредгольма, функции Гаусса. Исследование задачи с операторами дробного дифференцирования Сайго в краевом условии на характеристической части границы области.
статья, добавлен 31.05.2013Существование и единственность решения задачи для псевдопараболического и гиперболического уравнений четвертого порядка, когда условия склеивания задается на не характеристической линии. Сведение решаемой задачи к решению системы интегральных уравнений.
статья, добавлен 18.05.2016Исследование многоточечной краевой задачи, в которой функция удовлетворяет условиям Каратеодори. Вид трехточечной задачи для дифференциального уравнения второго порядка. Рассмотрение вспомогательного утверждения о разрешимости операторных уравнений.
статья, добавлен 26.04.2019Решение всякой количественной математической задачи и нахождение "решения" y по заданным исходным данным. Задача решения уравнения Фредгольма первого рода. Устойчивость эквивалентна непрерывности обратного оператора. Нормы всех членов последовательности.
реферат, добавлен 09.11.2017Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.
доклад, добавлен 29.04.2021Принцип Дюамеля для дифференциальных уравнений с частными производными. Задача Коши для однородного уравнения с неоднородными начальными условиями. Метод импульсов и интеграл Дюамеля. Принцип суперпозиции для линейного дифференциального уравнения.
контрольная работа, добавлен 09.05.2015Уравнения Фредгольма 1-го и 2-го рода. Конечные и бесконечные пределы интегрирования. Однородное интегральное уравнение Вольтера. Понятие метрического пространства. Принцип сжатых отображений. Теорема Банаха и решение интегральных уравнений 2-го рода.
курсовая работа, добавлен 22.04.2011Рассмотрение обратной краевой задачи для эволюционного уравнения четвёртого порядка, возникающего в гидроакустике стратифицированной жидкости. Решение обратной задачи при граничных условиях. Теорема существования и единственности классического решения.
статья, добавлен 27.09.2012- 15. Начально-краевая задача для одномерного гиперболического уравнения с интегральным граничным условием
Исследование начально-краевой задачи для гиперболического уравнения с нелокальным граничным условием, содержащим интеграл от искомого решения. Нелокальные соотношения, связывающие значение искомого решения в граничных и внутренних точках области.
статья, добавлен 31.05.2013 Классификация линейных интегральных уравнений. Уравнения Фредгольма и Вольтерра. Краевая задача на собственные значения и собственные функции (задача Штурма-Лиувилля). Поле экстремалей и функция Вейерштрасса. Изопериметрическая задача и задача Лагранжа.
курс лекций, добавлен 18.04.2014Построение регуляризирующих операторов для решения интегральных уравнений и систем уравнений Фредгольма первого рода. Доказательство теорем единственности и получение оценки устойчивости для таких уравнений в разных семействах множеств корректностей.
автореферат, добавлен 23.11.2017Описание сути интегральных уравнений третьего рода, а также характеристика направлений их исследований. Формулировка краевой задачи Гильберта. Решение интегрального уравнение третьего рода по теореме Нетера, доказательство его нормальной разрешимости.
статья, добавлен 18.05.2016Исследование для параболического уравнения второго порядка (специального вида) краевой задачи, когда каждое равенство граничного условия однородно относительно параметра при замене производных. Последовательность решения некорректных краевых задач.
статья, добавлен 02.02.2019Характеристика особенностей построения Декартовой прямоугольной системы координат (на плоскости, в пространстве). Графическое решение систем алгебраических линейных уравнений и задач линейного программирования с помощью Декартовой прямоугольной системы.
курсовая работа, добавлен 31.01.2015Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.
контрольная работа, добавлен 13.08.2014Решение задачи динамики, состоящей в восстановлении неизвестных граничных управлений, порождающих наблюдаемое движение динамической системы. Описание динамической системы как краевой задачи для уравнения с частными производными гиперболического типа.
статья, добавлен 15.01.2019Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.
курсовая работа, добавлен 08.10.2013Исследование краевой задачи для уравнения в частных производных третьего порядка гиперболического типа в бесконечной области трехмерного евклидова пространства. Доказательство однозначной разрешимости задачи методом Римана-Адамара с помощью функции.
статья, добавлен 20.07.2018Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014