Теория вероятностей. Примеры и задачи

Понятие случайных событий и величин в математической статистике. Основные определения и формулы, отражающие механизм дискретного распределения чисел. Очерк правил решения алгебраических и геометрических примеров со случайными пороговыми значениями.

Подобные документы

  • Понятие о теории вероятностей и математической статистике как о науках. Случайный эксперимент и его элементарные исходы. Классификация случайных событий и действия над ними. Основные теоремы теории вероятностей. Первичная обработка статистических данных.

    презентация, добавлен 24.06.2014

  • Дискретные и непрерывные виды случайных величин, законы распределения вероятностей их значений. Биноминальное распределение, формулы Бернулли и Пуассона. Понятие математического ожидания. Необходимые и достаточные условия независимости случайных величин.

    контрольная работа, добавлен 02.02.2010

  • Типовые вероятностные задачи энергетического характера. Определение вероятностей случайных событий. Основные теоремы теории вероятностей. Законы распределения случайных величин, числовые характеристики их функций. Случайные явления, события и величины.

    учебное пособие, добавлен 15.06.2015

  • Изучение решения задач по математической статистике и теории вероятностей с помощью формулы Бейеса и Бернулли. Определение константы, вычисление математического ожидания и дисперсии величины X, а также расчет и построение графика функции распределения.

    контрольная работа, добавлен 19.03.2014

  • Анализ математических моделей случайных явлений, изучаемых в теории вероятностей и математической статистике. Определение смешанных моментов и кумулянт для многомерных случайных величин. Изучение методов распределения пуассоновски остановленных сумм.

    дипломная работа, добавлен 21.06.2016

  • Основные закономерности теории вероятностей. Элементы комбинаторики. Система случайных величин. Вероятностный смысл плотности распределения. Законы больших чисел. Линейная регрессия. Статистическая проверка гипотез. Понятие о множественной корреляции.

    учебное пособие, добавлен 08.12.2013

  • Теория вероятностей как математическая наука, позволяющая находить вероятности случайных событий, связанных каким-либо образом. Ее предмет и основные понятия, история возникновения. Теоремы: сложения вероятностей, предельная; теория случайных процессов.

    реферат, добавлен 26.02.2010

  • Случайные события, теоремы сложения и умножения вероятностей. Виды случайных величин. Математическое ожидание и дисперсия дискретной случайной величины. Закон больших чисел. Плотность распределения вероятностей. Нормальное и показательное распределение.

    курс лекций, добавлен 24.04.2015

  • Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.

    краткое изложение, добавлен 21.03.2018

  • Поле рассеяния исходных случайных величин. Оценка числовых характеристик для исходных случайных величин. Расчёт оценки плотности распределения вероятностей для исходных случайных величин. Расчёт оптимальной линейной регрессии для случайных величин.

    курсовая работа, добавлен 16.11.2016

  • Изучение основных законов распределения дискретных случайных величин. Применение на практике основных расчетов и теорий биномиального распределения. Сущность закона распределения случайных величин, формулы Бернулли и ее применение в теории вероятности.

    презентация, добавлен 18.11.2012

  • Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.

    контрольная работа, добавлен 27.11.2017

  • Основные понятия теории вероятностей. Закон распределения дискретной случайной величины. Числовые характеристики дискретных случайных величин. Свойства и вычисления дисперсии. Условное математическое ожидание. Закон больших чисел. Неравенство Чебышева.

    курс лекций, добавлен 02.09.2016

  • Теория вероятностей как математический аппарат для изучения закономерностей случайных событий и связанных с ними случайных величин. Использование вероятностных и статистических методов в современной физике, технике, экономке, биологии и медицине.

    курсовая работа, добавлен 11.06.2014

  • Системы дискретных и непрерывных случайных величин, составляющие которых дискретны и непрерывны соответственно. Функция распределения системы двух случайных величин, плотность вероятностей. Аппарат числовых характеристик системы случайных величин.

    контрольная работа, добавлен 20.09.2013

  • Характеристическая функция суммы независимых случайных величин. Центральная предельная теорема. Закон больших чисел в форме Бернулли. Основные задачи математической статистики. Группировка данных по интервалам, определение частот элементов выборки.

    лекция, добавлен 28.09.2017

  • Случайные события и вероятность. Теорема сложения вероятностей для несовместных событий. Формула Байеса. Основные законы распределения дискретных случайных величин. Формула Бернулли. Интегральная теорема Лапласа. Математическое ожидание, дисперсия.

    курс лекций, добавлен 08.12.2015

  • Понятия о случайных величинах и функциях распределения. Теоретические распределения вероятностей: биномиальное, пуассоновское и нормальное. Числовые характеристики случайных величин, их определение и вычисление - математическое ожидание и дисперсия.

    лекция, добавлен 21.08.2015

  • Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.

    контрольная работа, добавлен 29.11.2015

  • Математический анализ случайных событий и связанных с ними случайных величин. Характеристика и распределение случайных величин. Функция распределения и плотность распределения. Основные свойства, аппроксимация и применение биномиального распределения.

    реферат, добавлен 12.05.2013

  • Дифференциальное уравнение Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Нахождение кривых распределения вероятностей и программное обеспечение как примеры решения задач математической статистики.

    дипломная работа, добавлен 26.02.2020

  • Методы оценки влияния различных случайных факторов на рассматриваемые явления. Изучение пространства элементарных событий. Построение математической теории вероятностей. Расчет гипотезной формулы Бейеса. Определение суммы и производных двух событий.

    лекция, добавлен 18.03.2014

  • 3адача определения закона распределения случайной величины или системы случайных величин по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Применение однофакторного дисперсионного анализа.

    курсовая работа, добавлен 21.10.2017

  • Математические законы теории вероятностей. Рассмотрение статистических закономерностей, свойственных массовым явлениям. Сходимость последовательностей случайных величин. Изучение закона больших чисел. Возможности предсказаний массовых случайных явлений.

    лекция, добавлен 18.03.2014

  • Основные понятия, теоремы и методы теории вероятностей и математической статистики. Общее описание случайных процессов. Исследование типовых примеров и упражнений. Сущность и элементы корреляционного анализа. Этапы проверки статистических гипотез.

    учебное пособие, добавлен 22.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.