Історія арифметики
Виникнення та розвиток числових уявлень, лічби і поняття числа. Історія нумерації і систем числення. Еволюція сучасних цифр. Основні етапи розвитку дробів. Натуральні і дробові числа. Велика та мала теореми Ферма. Теорія ірраціональних та дійсних чисел.
Подобные документы
Особливості еволюції задачі: від теореми Піфагора до Великої теореми Ферма. Значення для науки великого об’єднання в математиці. Творець великої проблеми П. де Ферма: його діяльність, книга "Арифметика", способи доведення теореми про прості числа.
презентация, добавлен 03.01.2016Поняття про спряжені комплексні числа та протилежні числа. Розв’язування квадратних рівнянь з від’ємним дискримінантом. Закони множення для дійсних чисел: переставний і сполучний. Приклади додавання, віднімання, множення та ділення комплексних чисел.
реферат, добавлен 07.10.2010Історія появи числової послідовності Фібоначчі. "Фібоначчівська" система числення як методика представлення будь-якого числа у вигляді деякого масиву цифр. Парадокс шахової дошки - один з основних прикладів практичного використання чисел Фібоначчі.
курсовая работа, добавлен 18.05.2015Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.
контрольная работа, добавлен 30.10.2010Вклад робіт Ферма на розвитку нових галузей в математиці: математичного аналізу, аналітичної геометрії, теорії вірогідності. Поява теорії з'єднань - комбінаторики. Велика теорема Ферма, історія її доведення. Спроби вирішення цієї математичної проблеми.
реферат, добавлен 03.05.2022Основна теорема арифметики. Подільність чисел на множині цілих чисел та його властивості. Застосування ланцюгових дробів. Канонічний розклад числа та діофантові рівняння. Системи лінійних конгруенцій, методи розв’язання. Китайська теорема про лишки.
шпаргалка, добавлен 07.06.2019Представлення раціональних чисел ланцюговими дробами. Представлення дійсних ірраціональних чисел правильними нескінченними ланцюговими дробами. Наближення дійсного числа раціональними дробами із заданими обмеженнями на знаменник. Теорема Діріхле.
курсовая работа, добавлен 03.01.2017Вивчення гніздових стекових генераторів, що обчислюють трансцендентні числа. Розгляд можливості моделей обчислень з різними обмеженнями щодо задання арифметичних функцій, дійсних чисел та дійсних функцій, а також зв’язки між класами дійсних функцій.
автореферат, добавлен 30.07.2014Відкриття несумірності діагоналі квадрата з його стороною. Виникнення проблем ірраціонального та трансцендентного числа. Методи встановлення ірраціональності чисел. Границі дробів, що мають ірраціональність. Означення та властивості трансцендентних чисел.
курсовая работа, добавлен 28.11.2013Історія виникнення чисел та їх понять. Розширення числового сприйняття в історичному аспекті та шкільному курсі математики. Аналіз підручників про розвиток світогляду чисельності. Дослідження відомостей про натуральні суми та їх дії в початкових класах.
курсовая работа, добавлен 15.05.2017Множина дійсних та комплексних чисел. Збіжні послідовності у просторі. Неперервність функцій дійсних змінних. Вивчення основних теорем диференціального числення, формула Тейлора. Первісна і невизначений інтеграл. Елементи аналізу у метричних просторах.
учебное пособие, добавлен 02.09.2014Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.
курсовая работа, добавлен 12.11.2018Концепция иррациональных чисел в античной математике. Принятие таких понятий как ноль, отрицательные числа, целые и дробные числа в средние века. Появление комплексных чисел в Новое время. Доказательство иррациональности числа Пи Ламбертом, Лежандром.
реферат, добавлен 08.02.2017Система зображення чисел у математиці. Умови використання геометричної прогресії в різноманітних системах числення. Ефективність кодування дійсних чисел та побудови відповідної метричної теорії Фібоначчі. Область застосування отриманих результатів.
автореферат, добавлен 12.07.2015- 15. Протилежні числа
Методика формування уявлення про суть поняття "протилежні числа". Способи знаходження й правильного запису числа, протилежного до даного. Розв’язувати рівнянь, що передбачають застосування поняття числа, протилежного до даного. Приклади протилежних чисел.
конспект урока, добавлен 19.09.2018 Современная формулировка великой теоремы Ферма. Доказательство: для всех троек (z,x,y) пифагоровых чисел; для всех членов семейства любой тройки пифагоровых чисел; для всех троек чисел, не больших числа z; для всех троек чисел натурального ряда чисел.
реферат, добавлен 30.03.2017- 17. Арифметика чисел
Натуральні числа, використовувані в математиці. Загальне ділення з остачею. Взаємно-прості та прості числа. Найбільший спільний дільник та методи його знаходження. Порівняння за модулем Лема. Арифметичні дії з раціональними числами і десятковими дробами.
лекция, добавлен 24.01.2014 Причетність числа сім до Всесвіту й Космосу в метафізичному розумінні. Розгляд цифри у єгипетській і вавілонській філософії і астрономії. Виникнення шістдесяткової концепції числення у стародавніх вавілонян. Вживання вісімкової системи в теперішні часи.
реферат, добавлен 05.03.2015Історія досліджень алгебраїчних та трансцендентних чисел. Викладення тверджень про трансцендентність деяких важливих математичних сталих. Корінь многочлена, коефіцієнтами якого є алгебраїчні числа. Відомі трансцендентні константи, перше їх використання.
реферат, добавлен 13.11.2014- 20. Комплексні числа
Найпростіші застосування комплексних чисел. Спосіб Гамільтона введення комплексних чисел. Застосування комплексних чисел в геометрії. Формули Ейлера і Муавра та їх застосування. Комплексні числа в геометричних побудовах. Комплексні числа і центр мас.
реферат, добавлен 10.01.2009 История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.
реферат, добавлен 25.02.2016Поняття метричного простору в математичному аналізі: множини обмежених числових послідовностей, їх збіжність. Принцип стиснутих відображень, поняття функції n змінних, простір "R" та основні теореми і зауваження до них. Повторні границі функцій.
курс лекций, добавлен 14.06.2009Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.
конспект урока, добавлен 20.09.2018- 24. Комплексні числа
Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.
контрольная работа, добавлен 16.07.2017 Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.
лекция, добавлен 22.12.2013