Исследование устойчивости и точности аппроксимации в численном методе
Определение порядка аппроксимации конечно-разностных уравнений. Способы повышения порядка аппроксимации, анализ устойчивости численного решения. Конкретные условия существования устойчивого численного решения. Методы уменьшения невязки и фиктивных узлов.
Подобные документы
Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.
контрольная работа, добавлен 12.12.2012Анализ результатов тестирования численного метода решения систем дифференциальных уравнений с задержанным аргументом, описывающих системы с хаотической динамикой, в пакете MatLab. Оценка фактической ошибки численного решения тестовой системы уравнений.
статья, добавлен 27.04.2019Определение устойчивости линейных алгебраических уравнений. Содержание методов Гаусса и LU-разложения. Правила вычислений с помощью квадратного корня и трехдиагональной матрицы. Понятие интеграла и аппроксимации функций. Основы решения задачи Коши.
методичка, добавлен 15.11.2014Расчет сеточной задачи с использованием теорем Куранта (об областях зависимости) и Филлипова (о связи устойчивости, аппроксимации и сходимости). Создание программы на Паскале для решения смешанной задачи для уравнения гиперболического типа методом сеток.
курсовая работа, добавлен 04.02.2012Способ построения бикомпактных разностных схем четвертого порядка аппроксимации по пространственной переменной на минимальном (двухточечном) шаблоне для уравнений и систем уравнений гиперболического типа. Схема сквозного расчета разрывных решений.
автореферат, добавлен 25.07.2018Методы линейной аппроксимации, наискорейшего спуска. Первые производные целевой функции. Вычисление производных по аналитической формуле и конечно-разностной аппроксимации. Метод сопряженного градиента Флетчера-Ривса. Классификация Ньютоновских методов.
реферат, добавлен 21.04.2016Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.
статья, добавлен 27.11.2018Ознакомление с процессом приближенного решения с помощью степенных рядов. Рассмотрение численного решения методом Эйлера и Рунге-Кутты. Исследование порядка вычисления абсолютной и относительной погрешности. Изучение совместного графического решения.
контрольная работа, добавлен 15.01.2018Математическое моделирование нестационарных течений. Нахождение конвективного и диффузионного потоков вязкой жидкости. Разработка алгоритма искусственной сжимаемости. Анализ влияния порядка аппроксимации уравнений Навье-Стокса на точность вычислений.
дипломная работа, добавлен 08.05.2015Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.
статья, добавлен 07.08.2020Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.
контрольная работа, добавлен 04.12.2014Предложение эффективного численного метода решения линейных краевых задач для обыкновенных дифференциальных уравнений второго порядка. Изложение свойстве составной кинематической кривой. Рассмотрение примеров решения краевых задач линейного уравнения.
статья, добавлен 27.05.2018Постановка задачи одномерной безусловной оптимизации. Алгоритм пассивного и активного поиска минимума. Методы поиска, основанные на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.
диссертация, добавлен 19.06.2015Определение абсолютной и относительной ошибки при помощи метода дифференциалов. Расчет линейной аппроксимации, применение метода интегралов для вычисления площади, работы силы. Практика решения характеристических уравнений. Общее решение ЛОДУ, ЛНДУ.
контрольная работа, добавлен 11.04.2009Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.
дипломная работа, добавлен 06.03.2016Выбор аппроксимирующих функций в зависимости от условия задачи. Построение графиков функций: исходной, полученных аппроксимирующих и зависимостей погрешностей. Проведение контрольных расчетов с помощью системы Mathcad для всех методов аппроксимации.
курсовая работа, добавлен 23.12.2014Задача Коши для обыкновенного дифференциального уравнения. Одношаговые методы: Эйлера, Рунге-Кутты. Контроль точности получаемого численного решения. Дифференциальные уравнения с запаздывающим аргументом. Многошаговые методы Адамса-Бэшфортса-Моултона.
лекция, добавлен 17.01.2015Получение формулы численного дифференцирования при помощи первого интерполяционного многочлена Ньютона. Построение формул численного дифференцирования и аппроксимации функции. Построение интерполяционного многочлена первой степени. Теорема Больцано-Коши.
контрольная работа, добавлен 22.12.2014Рассмотрение численного решения нелинейного уравнения, описывающего распространения нелинейных волн в двухфазных континуумах. Построение системы линейных алгебраических уравнений и решение данной задачи с использованием метода конечных разностей.
статья, добавлен 27.09.2012Проблема численного решения линейных уравнений. Основные методы решения нелинейных уравнений. Графическая иллюстрация метода половинного деления. Создание функциональной модели нахождения корней уравнения методами Ньютона, хорд и половинного деления.
дипломная работа, добавлен 31.10.2014Сущность и содержание аппроксимации функций, ее основные методы и сравнительная характеристика: интерполяция и среднеквадратичное приближение. Интерполяция как один из способов аппроксимации функций. Разновидности многочленов и способы интерполяции.
лекция, добавлен 14.05.2013Сравнение методов одномерной безусловной оптимизации. Алгоритм пассивного поиска минимума. Анализ методов поиска, основанных на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.
дипломная работа, добавлен 24.05.2018Метод Рунге-Кутты для решения как одиночных дифференциальных уравнений первого порядка, так и систем уравнений первого порядка. Исследование метода Рунге-Кутты четвертого порядка для решения дифференциальных уравнений. Программа для решения уравнения.
контрольная работа, добавлен 29.03.2012Решение дифференциального уравнения для вертикальных колебаний под действием вынуждающей силы. Сравнение функции ode45 и метода Рунге-Кутты 4 порядка. Оценка точности результата решения данного уравнения методом Эйлера и методом Рунге-Кутты 4 порядка.
лабораторная работа, добавлен 10.10.2015- 25. Метод Эйлера
Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.
доклад, добавлен 09.10.2012