Общие вопросы построения регрессионных моделей
Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.
Подобные документы
Характеристика метода наименьших квадратов, применяемого для оценки неизвестных параметров регрессионных моделей по выборочным данным, основанного на минимизации суммы квадратов остатков регрессии. Пример его использования в случае линейной зависимости.
реферат, добавлен 20.05.2013Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.
презентация, добавлен 20.01.2015Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.
контрольная работа, добавлен 20.06.2012Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.
краткое изложение, добавлен 17.03.2015Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.
лекция, добавлен 10.10.2014Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.
доклад, добавлен 19.11.2012Геометрическая интерпретация множественной регрессионной модели с двумя объясняющими переменными. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы, свойства регрессионных коэффициентов, вычисление стандартной ошибки.
презентация, добавлен 20.01.2015Вероятностное обоснование МНК (метода наименьших квадратов) как наилучшей оценки. Принцип максимального правдоподобия, регрессия. Метод решения: минимизация невязки с привлечением методов матричного исчисления. Доверительные интервалы для оценок МНК.
презентация, добавлен 06.08.2015Цели, факторы, интервалы регрессии. Начальное формирование и оптимизация уравнений. Практическое построение регрессионных моделей. Примеры построения моделей двумерной и четырехмерной функционально-факторной нелинейной регрессии программой "Тренды ФСП-1".
статья, добавлен 03.11.2015Рассмотрение метода взвешенных наименьших квадратов. Исследование случая парной регрессии. Нарушение гомоскедастичности и наличие автокорреляции остатков. Уравнение регрессии без свободного члена. Дисперсия результативного признака и остаточных величин.
презентация, добавлен 13.07.2015Тестирование гипотез о дисперсии ошибок с помощью статистики Пирсона. Распределение оценок коэффициентов в асимптотике. Проверка значимости коэффициентов множественной регрессии по критерию Стьюдента. Предсказание среднего значения зависимой переменной.
лекция, добавлен 15.06.2014Сущность и история разработки метода наименьших квадратов. Примеры решения уравнений в матричном виде по способу наименьших квадратов. Свойства оценок на основе метода наименьших квадратов. Парная линейная и нелинейная регрессия, методы их оценивания.
реферат, добавлен 26.04.2015Характеристика метода наименьших квадратов. Краткая информация о двухшаговом и трёхшаговом методах наименьших квадратов. Парная линейная регрессия и системы одновременных уравнений. Автокорреляция остатков как важная проблема при оценивании регрессии.
контрольная работа, добавлен 09.07.2011Метод наименьших квадратов - один из основных способов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Методика определения частных коэффициентов эластичности на основе уравнений регрессии.
контрольная работа, добавлен 11.04.2015Применение метода наименьших квадратов при составлении математического описания криволинейной парной, единичной и множественной линейных регрессий. Особенности описания частной криволинейной регрессии на основе множественной линейной регрессии.
краткое изложение, добавлен 22.05.2010Построение регрессионных моделей по рядам динамики. Использование критериев Фишера и Стьюдента, формулы линейного коэффициента корреляции. Оценка параметров уравнения регрессии, применение метода наименьших квадратов. Примеры гетероскедастичности.
контрольная работа, добавлен 25.04.2015Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.
контрольная работа, добавлен 23.05.2021Рассмотрение особенностей исследования остаточных величин. Характеристика основных случаев применения метода Гольдфельда-Квандта. Определение значения отсутствия автокорреляции остатков. Выявление алгоритма проверки регрессии на гетероскедастичность.
презентация, добавлен 13.07.2015Применение корреляционного анализа в математической статистике. Классическая линейная модель множественной регрессии. Использование метода наименьших квадратов для оценки параметров модели множественной регрессии. Условия и теорема Гаусса-Маркова.
презентация, добавлен 15.12.2014Методы получения адекватных моделей для решения управленческих задач. Свойства почв и метеоусловий северной и центральной зон Краснодарского края. Оценка урожайности по методу наименьших квадратов. Моделирование с помощью кусочно-линейной регрессии.
статья, добавлен 26.04.2017Анализ динамики роста стоимости основных рабочих фондов. Расчёт парного коэффициента корреляции. Проверка значимости с помощью статистики Стьюдента. Вычисление оценки неизвестных параметров уравнения парной регрессии по методу наименьших квадратов.
контрольная работа, добавлен 15.03.2017Сущность и содержание метода наименьших квадратов, свойства оценок на его основе. Парная линейная регрессия. Системы одновременных уравнений, направления ее исследования и порядок решения. Авторегрессионное преобразование. Применение МНК в экономике.
курсовая работа, добавлен 15.05.2013Построение классической линейной модели множественной регрессии. Анализ матриц коэффициентов корреляции на наличие мультиколлинеарности. Анализ линейной модели парной регрессии с наиболее значимым фактором. Влиянием значимых факторов на результат.
контрольная работа, добавлен 23.05.2015Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.
курсовая работа, добавлен 19.06.2015Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.
курсовая работа, добавлен 12.12.2014