Эйлеровы циклы и цепи
Алгоритм выделения эйлерова цикла в связном мультиграфе с четными степенями вершин. Гамильтоновы циклы и цепи. Остовное дерево с минимальной суммой длин содержащихся в нем ребер. Висячая вершина с инцидентным ей ребром. Изучение свойств деревьев.
Подобные документы
Изучение понятия и разновидностей графов. Явление изоморфизма и гомеоморфизма. Пути и циклы. Дерево или произвольно-связный граф без циклов. Цикломатическое число и фундаментальные циклы. Независимые множества и покрытия. Алгоритм Дейкстры, Краскала.
шпаргалка, добавлен 08.09.2013Основные понятия о теории графа. Матрица смежности неориентированного графа с вершинами. Матрица инциденций неориентированного графа с вершинами и ребрами. Линейный однонаправленный список для задания множества вершин. Фундаментальные циклы графа.
реферат, добавлен 27.03.2011Основные понятия и определение графа. Степень вершины графа. Особенности и свойства подграфа, пути, цепи и цикла. Характеристика связных графов. Анализ теоремы об оценке числа рёбер несвязного графа. Сущность понятий "дерево графа" и "лес графа".
методичка, добавлен 15.10.2016Получение Л. Эйлером критерия существования обхода ребер графа при решении задачи о Кенигсбергских мостах. Формулировка теоремы для связных ориентированных и неориентированных графов. Пример дерева перебора вариантов. Фундаментальное множество циклов.
презентация, добавлен 09.09.2017Укладка деревьев минимальной длины и ширины. Реализация алгоритма укладки дерева минимальной ширины и длины. Определение укладки ориентированного дерева, характеристика основных способов нахождения длины и ширины укладки дерева. Метки вершин дерева.
дипломная работа, добавлен 07.12.2019Дерево как связный граф, не содержащий циклов. Перечень основных свойств деревьев. Общее понятие про орграф. Содержание теоремы А. Кэлли. Сущность понятия "подграф". Пример алгоритма построения каркаса в связном графе, особенности его обоснования.
реферат, добавлен 18.04.2012Применение теории графов в современной вычислительной технике и кибернетике. Матрица смежности и инциденций вершин. Задание множества вершин, достижимых из вершины v, с использованием линейного однонаправленного списка. Фундаментальные циклы графа.
контрольная работа, добавлен 24.04.2011Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.
курсовая работа, добавлен 22.06.2014Понятие и определение графа, геометрическое изображение его вершин и элементов. Сущность маршрута в графе, простой и замкнутый циклы. Доказательство алгоритма Беллмана, построение блок-схемы нахождения расстояния от источника до всех вершин графа.
курсовая работа, добавлен 24.04.2011Основные определения теории графов. Матрицы смежности и инцидентности. Вершинная связность и реберная вязность. Теорема Менгера и выделение k непересекающихся остовных деревьев 2k–реберно связном графе. Построение k непересекающихся остовных деревьев.
дипломная работа, добавлен 26.02.2020Понятие и специфические особенности гамильтоновых циклов, их характеристики. Условия существования гамильтонова цикла. Задачи, связанные с поиском гамильтоновых циклов, методы их построения в графе. Алгебраический метод построения гамильтоновых циклов.
контрольная работа, добавлен 23.04.2011Построение модели транспортной сети в виде графа, с множеством вершин, соответствующих узлам сети, и множеством ребер – участкам дорог. Оптимальный алгоритм выделения наибольших максимальных цепей по заданному критерию и оценка по остальным критериям.
статья, добавлен 26.05.2017Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.
контрольная работа, добавлен 03.06.2012Ориентированные, неориентированные и смешанные графы. Понятие деревьев и их основные свойства, связность вершин, ацикличность. Определения путей в графе. Решение задачи по определению числа путей заданной длины, составление компьютерной программы.
курсовая работа, добавлен 18.12.2014Определение графов и их элементы. Связанные графы, оценка числа их ребер через число вершин и компонент связности. Обходы графов, оценка числа помеченных эйлеровых графов. Изучение планарных и двудольных графов. Основные свойства деревьев, их кодирование.
учебное пособие, добавлен 15.10.2016Исследование свойств предфрактальных графов, порожденных затравкой, представляющей собой дерево. Использование степени фрактализации для определения исследуемого объекта. Оценка структуры относительно ее принадлежности к предфрактальным графам.
статья, добавлен 19.01.2018Графічне зображення графа та інші способи його представлення, відношення інцидентності. Дослідження оптимального шляху графа. Проведення синтезу графа, визначення ваги ребер та індексів вершин, що має задану структуру та заданий оптимальний шлях.
лабораторная работа, добавлен 06.06.2015Интеграл Эйлера первого рода (бета-функция). Определение Эйлерова интеграла второго рода. Характеристика свойств непрерывности гамма-функции, основного функционального уравнения и формулы дополнения. Установление связи между бета- и гамма-функциями.
курсовая работа, добавлен 18.12.2012- 19. Теория графов
Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.
лекция, добавлен 18.10.2013 - 20. Теория графов
Основные понятия теории графов. Представления о планарном графе. Теорема Куратовского и другие характеризации планарности. Эйлеровы и гамильтоновы графы. Расчет количества израсходованного топлива за неделю каждым водителем по справочным данным задачи.
курсовая работа, добавлен 30.11.2013 Рассмотрение основных понятий теории множеств. Сущность элементарных тождеств, их функции и признаки. Главные свойства операций над отношениями: эквивалентности, толерантности, частичности порядка. Характеристика теории графов: эйлеровы, гамильтоновы.
учебное пособие, добавлен 28.12.2013Описание электрической цепи пассивного четырехполюсника по каналу "вход-выход". Запись уравнения электрической цепи в терминах пространства состояния и получение передаточной функции. Преобразование дифференциального уравнения цепи в дискретную форму.
курсовая работа, добавлен 01.04.2015Основные методы теории графов. Задача раскраски графа в информатике. Составление расписаний и других задач на распределение ресурсов. Алгоритм неявного перебора. Составление графиков осмотра. Задача составления расписания. Способы раскраски вершин.
курсовая работа, добавлен 26.11.2014- 24. Теория графов
Определение понятия и сущности графов. Изучение проблемы построения неографа с заданным списком вершин и предписанными теоретическими свойствами. Описание реализации алгоритмов построения связных графов и деревьев в пакете символьной математики Maple.
контрольная работа, добавлен 18.12.2015 История появления теории графов. Первое знакомство с графами, математическое понятие и определение. Набор функций, определяющий степени вершин. Циклы и пути в графе. Варианты решения различных их разновидностей. Сферы, области использования теории графов.
курсовая работа, добавлен 29.01.2010