Основы дискретной математики
Основные понятия теории графов и ее приложения к исследованию линейных систем, задачам минимизации, а также сетевого планирования. Приведение примеров решения задач различной сложности с подробными объяснениями. Задачи для самостоятельной работы.
Подобные документы
Теория графов как область дискретной математики с геометрическим подходом к изучению объектов. Решение математических развлекательных задач и головоломок. Эйлеров путь графа. Краткие пути решения. Задача коммивояжера - одна из задач теории комбинаторики.
реферат, добавлен 13.01.2012Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.
реферат, добавлен 18.03.2010Изучение понятия и видов матрицы, рассмотрение алгоритма решения систем линейных уравнений в матричной форме. Исследование свойств пределов функций и примеров их нахождения. Характеристика основных задач, инструментов и методов аналитической геометрии.
реферат, добавлен 02.06.2014Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.
методичка, добавлен 24.03.2015Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.
курсовая работа, добавлен 06.07.2014Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.
контрольная работа, добавлен 03.04.2013Основные понятия теории графов. Экстремальные пути и контуры на графах. Характеристика особенностей алгоритма Форда. Основы решения задачи поиска контура минимальной длины. Аспекты применения алгоритма Форда-Фалкерсона в задаче о максимальном потоке.
статья, добавлен 13.01.2014Составные части графа. Использование теории графов при решении задач в экономике. Алгоритмы, предназначенные для выполнения задачи оптимизации. Понятие "жадный алгоритм", его свойства. Применение формул метода Дейкстры для решения экономических задач.
статья, добавлен 20.04.2019Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.
контрольная работа, добавлен 12.12.2012Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.
презентация, добавлен 31.10.2013- 11. Теория графов
История возникновения теории графов. Основные ее определения и теоремы. Применение положений данной теории в школьном курсе математики, в различных областях науки и техники. Объяснение теоретического материала на примере задач по естествознанию.
реферат, добавлен 01.03.2018 Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.
реферат, добавлен 06.03.2010- 13. Теория графов
История возникновения, сущность, основные понятия, виды, способы задания и характеристики вершин теории графов. Доказательство теоремы Эйлера об эйлеровых графах (критерия эйлеровости графа). Алгоритм решения задач изоморфизма. Понятие дерева и леса.
лекция, добавлен 11.02.2010 Рассмотрение применения дискретной математики в информатике. Применение теории графов в экономических задачах. Определение жадного алгоритма, решение задачи о максимальной загруженности линий. Описание алгоритма Дейкстра. Решение задачи Коммивояжера.
реферат, добавлен 07.10.2014История появления теории графов. Первое знакомство с графами, математическое понятие и определение. Набор функций, определяющий степени вершин. Циклы и пути в графе. Варианты решения различных их разновидностей. Сферы, области использования теории графов.
курсовая работа, добавлен 29.01.2010Вычисление определителя матрицы классическим способом. Расчет установившихся режимов электрических систем. Нахождение токов методом Крамера. Вычисление узловых напряжений. Методы решения систем линейных алгебраических уравнений. Свойство вероятности.
курсовая работа, добавлен 15.05.2011Понятие о графе, способы его задания. Достижимость и обратная достижимость вершин графа. Графовые модели для оптимизации транспортных сетей и потоков, решения задач календарного планирования, задач о назначениях и других задач дискретной оптимизации.
курсовая работа, добавлен 21.12.2011История возникновения теории графов. Основные понятия: ориентированный граф, петля, кратные ребра, гипердуги, подграфы. Способы представления графов в компьютере. Матрица смежности, инцидентность вершин и ребер, массивы дуг. Обзор задач теории графов.
курсовая работа, добавлен 14.06.2011Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.
статья, добавлен 26.07.2016Пример решения линейных алгебраических уравнений в матричной форме с использованием различных подходов и команды приложения. Вычисление определителя по формулам Крамера и методом Гаусса. Вычисление матрицы системы, ее приведение ступенчатому виду.
лабораторная работа, добавлен 08.06.2015- 21. Графы
Изучение истории возникновения теории графов, основные понятия и виды графов. Теория графов в транспортных, коммуникационных и геоинформационных системах. Применение теории графов в медицине, биологии, физике, химии, астрономии, истории, искусстве.
научная работа, добавлен 03.05.2019 Изучение базовых понятий и определений; ознакомление с задачами, возникающими в теории графов и методами их решения. Освоение компьютерных способов представления графов и алгоритмов машинной обработки графов. Программные продукты для анализа графов.
контрольная работа, добавлен 13.04.2012История возникновения графов, изучение их определения и свойств. Исследование роли графов в жизни. Применение теории графов при решении математических задач и их использование для изображения железных дорог и систем улиц города на географических картах.
презентация, добавлен 15.10.2016Порядок и сроки выдачи заданий на курсовое проектирование по дисциплине "Теория конечных графов и ее приложения". Содержание курсового проекта. Пример решения практической задачи на примере составления графика обслуживания одиноких пенсионеров района.
методичка, добавлен 03.10.2017Комбинаторика как раздел дискретной математики, изучающий дискретные объекты, множества и отношения на них. История термина "комбинаторика", элементы этой области математики. Примеры решения комбинаторных задач: перестановки, размещения, сочетания.
контрольная работа, добавлен 09.01.2019