Решение задач проектирования машин и механизмов методом ПЛП-поиска
Планируемый ЛП-поиск как алгоритм, объединяющий стохастические модели, свойственные методу Монте-Карло и планирование вычислительного эксперимента. Методика проведения однофакторного дисперсионного анализа по всем параметрам для каждого критерия.
Подобные документы
Метод Монте-Карло, вычисления интегралов, решения систем алгебраических уравнений высокого порядка, исследования различного рода сложных систем. Обычный алгоритм Монте-Карло интегрирования, моделирование поведения элементарных частей физической системы.
доклад, добавлен 25.11.2010Преимущества, характеристика и специфика метода Монте-Карло, его применение в нанотехнологиях и в вычислении интегралов. Способ усреднения подынтегральной функции, оценка погрешности метода Монте-Карло и решение интегральных уравнений второго рода.
курсовая работа, добавлен 02.05.2015Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.
курсовая работа, добавлен 16.05.2019Разработка методов анализа данных, предназначенных для решения конкретных прикладных задач. Изучение влияния на свойства статистических процедур анализа данных тех или иных отклонений от исходных предположений. Примеры применения метода Монте-Карло.
статья, добавлен 22.05.2017Математическое ожидание, дисперсия, доверительная вероятность. Общая схема метода Монте-Карло, который можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Вычисление интегралов методом Монте-Карло.
курсовая работа, добавлен 28.04.2012Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.
курсовая работа, добавлен 23.11.2015Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.
курсовая работа, добавлен 31.10.2017Исследование машинных систем методом имитационного моделирования (метод Монте-Карло), простые и экономные способы формирования последовательности случайных чисел. Характеристика области применения метода Монте-Карло, его достоинства и недостатки.
реферат, добавлен 18.03.2014История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.
курсовая работа, добавлен 29.08.2010Численные методы решения математических задач. Прямое статистическое моделирование при помощи получения и преобразования случайных чисел. Применение метода Монте-Карло в вычислительной аэродинамике. Разработка алгоритма для кинетических уравнений.
статья, добавлен 13.12.2013Характеристика численных методов в математических расчетах. Описания методов для решения различных задач с помощью случайных последовательностей. Обзор техники моделирования случайной последовательности чисел. Практическое применение метода Монте-Карло.
доклад, добавлен 21.03.2015Статистическое моделирование как научное направление, области его применения. Методы Монте-Карло: анализ общей схемы, достоинства, недостатки и примеры применения. Случайные числа, генераторы случайных и псевдослучайных чисел. Метод Hit-Or-Miss.
лекция, добавлен 18.07.2013Характеристика моделей дисперсионного анализа с фиксированными уровнями факторов. Анализ статистических данных. Определение среднего арифметического урожайности. Рассмотрение схемы однофакторного дисперсионного анализа. Изучение метода нулевых гипотез.
контрольная работа, добавлен 19.04.2015Метод моделирования случайных величин с целью вычисления характеристик распределений. Влияние метода Монте-Карлона на развитие методов вычислительной математики. Математическое ожидание, дисперсия, точность оценки, доверительная вероятность и интервал.
курсовая работа, добавлен 06.03.2010Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.
контрольная работа, добавлен 10.01.2012Разработка комплекса программ для обоснования безопасной работы ядерного реактора. Расчет пространственно-энергетического распределения нейтронов в элементах активной зоны. Решение кинетических уравнений с применением прецизионных алгоритмов Монте-Карло.
автореферат, добавлен 03.02.2018Математическое моделирование - причина повышения значения вычислительного эксперимента в теоретических и прикладных науках. Наличие графических зависимостей как метод решения проблемы интегрирования численной информации, полученной в эксперименте.
статья, добавлен 25.08.2020Рототабельное планирование эксперимента второго порядка. Порядок проверки значимости коэффициентов уравнения регрессии с помощью критерия Стьюдента. Проверка адекватности уравнения регрессии с помощью критерия Фишера. Построение чертежа линии уровня.
контрольная работа, добавлен 20.10.2013История появления теории графов, ее основные понятия, сфера практического приложения. Наиболее эффективные алгоритмы нахождения кратчайшего пути. Методика определения кратчайших путей при помощи графа. Алгоритм Дейкстры. Решение задач практической части.
курсовая работа, добавлен 14.01.2011Статистическое описание и выборочные характеристики двумерного случайного вектора. Предмет линейного регрессионного анализа. Особенности однофакторного дисперсионного анализа. Уравнение выборочной линейной регрессии. Выборочное значение статистики.
курсовая работа, добавлен 22.10.2017Определение понятия дисперсионного анализа. Создания выборок и проверка нормальности распределения результативного признака. Описание методов однофакторного дисперсионного анализа для несвязанных и связанных выборок, их графическое представление.
курсовая работа, добавлен 12.10.2016Использование метода Монте-Карло для решения математических задач при помощи моделирования случайных величин. Способы получения случайных величин. Алгоритмы получения псевдослучайных чисел. Получение псевдослучайных точек методами Неймана и Лемера.
практическая работа, добавлен 26.12.2016Применение метода Монте-Карло для моделирования переноса нейтронов в ядерных реакторах. Моделирование трехмерных систем с произвольной геометрией с использованием комбинаторного подхода. Применение программы Призма для решения линейных задач переноса.
статья, добавлен 15.01.2019Обзор проблемы "поиска эксперта". Применение модели LDA для решения различных прикладных задач. Латентное размещение Дирихле. "Поиск эксперта" используя LDA модель. Диверсификация экспериментальной выборки. Новый двухфакторный способ поиска экспертов.
дипломная работа, добавлен 13.11.2015Характеристика теории вероятности как неслучайного явления в науке: история её возникновения (Паскаль, Ферма, Гюйгенс); возможности; определения и основные понятия; метод "Монте-Карло"; предпосылки развития технологий, кибернетики, искусственного разума.
реферат, добавлен 11.03.2014