Нейронные сети

Особенности программирования модели формального нейрона и персептрона Розенблатта, алгоритм и правило Хебба. Искусственный нейрон с активационной сигмоидальной логистической функцией. Персептронная система распознания изображений и сетевой поверхности.

Подобные документы

  • Рассмотрение нейрокомпьютера как вычислительной системы с архитектурой MSIMD. Базовые архитектуры нейронных сетей. Правило коррекции по ошибке, обучение Больцмана и правило Хебба. Особенности программирования средств аппаратной поддержки нейровычислений.

    реферат, добавлен 02.03.2012

  • Исследование понятия "искусственный нейрон". Характеристика модели нейрона Маккалока-Питтса. Моделирование логических операций "конъюнкция" и "дизъюнкция", оценка невозможности решения проблемы "исключающего или" с помощью нейрона с двумя входами.

    лабораторная работа, добавлен 19.06.2022

  • История искусственных нейронных сетей. Модель формального нейрона Питтса и персептрон Розенблатта. Синапс как элементарная структура и функциональный узел между двумя нейронами. Примеры наиболее часто используемых преобразовательных функций Хопфилда.

    презентация, добавлен 25.06.2013

  • Модель формального кибернетического нейрона. Характеристика многослойного персептрона. Его обучение методом обратного распространения ошибки. Рекурсивные сети Элмана, способные обрабатывать последовательности векторов. Области применения нейросетей.

    статья, добавлен 14.12.2017

  • Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.

    реферат, добавлен 29.12.2011

  • Анализ проблемы выявления сетевой атаки с целью последующего применения мер по обеспечению информационной безопасности. Описание архитектуры многослойного персептрона с сигмоидальной функцией активации. Исследованы различные конфигурации нейронной сети.

    статья, добавлен 30.07.2017

  • Биологический прототип и искусственный нейрон. Распознавание цифр с помощью сетей Хопфилда. Алгоритм функционирования сети. Классификация входного образа. Развитие искусственных нейронных сетей. Исследование возможностей нейронных сетей и их развития.

    курсовая работа, добавлен 25.01.2014

  • Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.

    презентация, добавлен 16.10.2013

  • Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.

    курсовая работа, добавлен 04.12.2012

  • Топология нейронной сети с добавленной сверточной плоскостью, модифицированной активационной функцией нейронов, обеспечивающая выделение сюжета на произвольном фоне. Анализ количества ложных обнаружений на различных итерациях процедуры самонастройки.

    автореферат, добавлен 02.09.2018

  • Искусственный нейрон, предпосылки его создания, основные функции активации, реализация в виде алгоритма либо структуры. Линейная передаточная функция. Сигмоидальная передаточная функция. Гиперболический тангенс, радиально-базисная функция передачи.

    реферат, добавлен 17.07.2013

  • История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.

    контрольная работа, добавлен 18.02.2018

  • Смысл постулата Хебба в том, что если изначально наблюдается причинно-следственная связь между активациями пре- и постсинаптического нейрона, то эта связь имеет тенденцию к усилению. Следствия, исходящие из правила Хебба. Структурная схема нейрона.

    презентация, добавлен 20.05.2020

  • Краткая история развития искусственных нейронных сетей. Анализ факторов, влияющих на формирование цены на недвижимость. Математическая модель нейрона. Сравнение многослойного персептрона и радиально-базисной сети. Архитектурная и адаптивная динамика.

    дипломная работа, добавлен 02.09.2018

  • Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.

    автореферат, добавлен 29.03.2018

  • Нейронные сети для решения задач классификации или кластеризации многомерных данных. Алгоритм работы блока функции преобразования. Рекурсивные сети. Программа Акинатор. Прохождение последовательности сигналов через сеть. Основные свойства персептрона.

    курсовая работа, добавлен 19.07.2012

  • Исследование модели, основанной на использовании сверточных нейронных сетей. Выбор модели ResNet18 с финальной функцией активации Softmax и функцией потерь CrossEntropy. Особенность использования языка программирования Python и библиотеки PyTorch.

    дипломная работа, добавлен 10.12.2019

  • Искусственный интеллект как новая информационная революция. Некоторые сведения о мозге. Основы теории нейроподобных сетей. Схема строения нейрона как элементарного звена. Нейроподобный элемент, который используется при моделировании нейронных сетей.

    контрольная работа, добавлен 21.10.2017

  • Сетевые устройства - терминалы, которые соединяют в едином информационном пространстве гаджеты, используемые в повседневной деятельности. Расширенное машинное обучение, глубокие нейронные сети - основа создания автономных интеллектуальных систем.

    контрольная работа, добавлен 15.03.2019

  • Представление знаний для решения интеллектуальных проблем. Принцип выбора потенциального дерева решения. Искусственные нейронные сети. Принцип работы искусственного нейрона, его формальная модель. Применение нейронных сетей, классификация нейронов.

    учебное пособие, добавлен 26.08.2015

  • Моделирование процесса распознания речи на основе алгоритмов нечеткой логики, локальных экстремумов, сегментно-слогового синтеза. Определение объектов в системах автоматического анализа изображений. Функции вейвлет-фильтров для сжатия изображений.

    статья, добавлен 14.06.2016

  • Понятия, определения нейронных сетей и классификации изображений. Методы оптимизации работы нейронной сети. Описание интерфейса программной реализации решения задачи классификации изображений. Решение задачи распознания изображений реальных объектов базы.

    дипломная работа, добавлен 06.06.2015

  • История создания искусственной нейронной сети. Перцептрон как одна из первых моделей нейросети. Архитектура когнитрона, его иерархическая многослойная организация. Классификация нейронных сетей по характеру обучения, основные сферы их применения.

    курсовая работа, добавлен 16.12.2016

  • Описание модели динамического нейрона. Разработка новых методов обучения нейронных сетей, генерирующих спайки. Анализ аспектов функционирования нейрона, как детектора временных последовательностей сигналов. Исследование задач обучения нейрона с учителем.

    статья, добавлен 18.01.2018

  • Особенности применения инновационных инструментов прогнозирования. В качестве основного метода, используемого для прогнозирования, применяются искусственные нейронные сети Хопфилда, представляющие собой нейронные сети на основе радиально-базисных функций.

    статья, добавлен 15.12.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.