Решение уравнений методом хорд
Особенности теоретических основ численного решения скалярных (нелинейных) уравнений методом хорд. Нахождение отрезков из области определения функции f (x), внутри которых содержится только один корень решаемого уравнения. Отделение корней уравнения.
Подобные документы
Решение уравнения методом хорд и касательных. Сужение отрезка изоляции корня методом проб. Вычисление комплексных корней уравнения. Построение корней на комплексной плоскости. Запись корней в алгебраической, тригонометрической и показательной формах.
контрольная работа, добавлен 21.10.2017Решение нелинейного уравнения методом хорд. Порядок определения корня нелинейного уравнения методом касательных (Ньютона). Особенности применения комбинированного метода хорд и касательных. Построение соответствующих блок-схем и написание текста программ.
контрольная работа, добавлен 29.10.2017Нахождение корней линейных и квадратных уравнений методом последовательных приближений с использованием Microsoft Excel. Решение трансцендентного уравнения с двумя верными десятичными знаками методом проб; комбинированный метод хорд и касательных.
контрольная работа, добавлен 26.11.2013Численное решение уравнения. Условия, наложенные на функцию. Графический метод определения корней. Метод дихотомии и процесс итераций. Первые приближения для метода касательных. Метод секущих и хорд. Сущность комбинированного метода решения уравнения.
курсовая работа, добавлен 08.07.2012Проблема численного решения линейных уравнений. Основные методы решения нелинейных уравнений. Графическая иллюстрация метода половинного деления. Создание функциональной модели нахождения корней уравнения методами Ньютона, хорд и половинного деления.
дипломная работа, добавлен 31.10.2014Решение нелинейных уравнений с одной переменной с использованием численных методов: метода итерации и комбинированного метода. Отделение корней заданного уравнения графическим методом, их уточнение численными методами. Расчет количества итераций.
контрольная работа, добавлен 14.12.2014Обзор существующих методов решения нелинейных уравнений. Алгебраические и трансцендентные уравнения. Методы локализации корней. Алгоритм метода Ньютона. Численные методы решения нелинейных уравнений. Разработка и тестирование программного продукта.
курсовая работа, добавлен 14.05.2014Аналитический и графический способ изолирования корня, нахождение диапазона, методы по уточнению корней различных нелинейных и трансцендентных уравнений. Комбинированный метод хорд и касательных, модифицированный метод Ньютона. Уравнение третьей степени.
лабораторная работа, добавлен 08.11.2014Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.
учебное пособие, добавлен 24.10.2012Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.
презентация, добавлен 06.12.2011Теорема о существовании корня непрерывной функции. Методы отделения и уточнения корней: алгоритмы, скорость сходимости, условия применимости, их результаты. Геометрическая интерпретация методов Ньютона и хорд. Варианты выбора начального приближения.
презентация, добавлен 30.10.2013Основные правила и формулы решения нелинейных уравнений. Процесс отделения корней, характеристика основных проблем. Особенности применения графического и аналитического методов. Конечные методы уточнения корней нелинейного уравнения. Метод дихотомии.
лекция, добавлен 29.10.2013Решение нелинейных уравнений численными методами: методом половинного деления, методом Ньютона. Определение промежутков, содержащих корни. График функции cos(x)ch(x)+1=0. Создание функции нахождения точных значений корней с помощью программы MatLab.
лабораторная работа, добавлен 10.10.2015Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.
презентация, добавлен 27.05.2014- 15. Численные методы
Описание численных методов решения алгебраических и дифференциальных уравнений. Использование языка программирования Visual Basic для реализации алгоритмов. Определение корней уравнения методом хорд и касательных. Аппроксимация и интерполяция функций.
учебное пособие, добавлен 22.05.2014 Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.
курсовая работа, добавлен 04.11.2012Численные методы решения нелинейных уравнений. Отделение корней уравнения. Численные методы интегрирования. Формулы прямоугольников, трапеций. Формула Симпсона. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера и Рунге-Кутты.
методичка, добавлен 25.03.2015Задачи на определение функции пользователя и вычисление ее значения для различных значений аргумента. Примеры решения нелинейного уравнения различными методами. Выполнение проверки корней уравнения графически и подстановкой корней в исходное уравнение.
контрольная работа, добавлен 03.06.2011Общее понятие о комплексных числах и изучение методов решения уравнений первой степени. Примеры квадратных, кубических уравнений и извлечение корней. Число действительных корней и методы решения уравнений в радикалах о существований корней уравнений.
презентация, добавлен 13.05.2012- 20. Об одной нелокальной краевой задаче для гиперболического уравнения, вырождающегося внутри области
Решение гиперболических и однородных интегральных уравнений методом последовательных приближений, нахождение членов функциональной последовательности. Доказательство Леммы. Нелокальные задачи для уравнений смешанного типа с сингулярными коэффициентами.
статья, добавлен 15.06.2015 Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.
курсовая работа, добавлен 14.03.2015Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.
статья, добавлен 07.08.2020Решение задач с параметрами в школьной программе. Методы решения уравнений и неравенств. Поиск области определения уравнения. Точки пересечения прямой с графиком функции. Система значений переменных. Множество всех допустимых значений уравнения.
контрольная работа, добавлен 04.12.2011Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.
контрольная работа, добавлен 13.08.2014Решение уравнения по формулам Крамера, с помощью обратной матрицы, методом Гаусса. Приведение уравнения к каноническому виду. Нахождение длин сторон треугольника по координатам его вершин. Нахождение длин и угла между векторами, их запись в системе орт.
контрольная работа, добавлен 07.03.2016