Предварительное исследование методов машинного обучения в прогнозировании результатов английской премьер-лиги
Наиболее важной составляющей верного прогноза является правильный набор данных для футбольных матчей. Версия футбольного прогноза, представленную в виде задачи классификации с целевым признаком, состоящего из классов: победа хозяев, победа гостей и ничья.
Подобные документы
Рассмотрение машинного обучения для классификации комментариев в рамках курсового проекта по дисциплине "Machine Learning. Обучающиеся технические системы". Автоматическое определение эмоциональной окраски (позитивный, негативный) текстовых данных.
статья, добавлен 19.02.2019Эталонная модель Всемирного форума по интернету вещей. Анализ центров обработки данных и облачных вычислений. Исследование подходов к разработке распределенных алгоритмов обучения. Методы машинного обучения. Изучение наивного байесовского классификатора.
дипломная работа, добавлен 07.12.2019Данная научная статья представляет собой комплексное исследование современных методов применения машинного обучения в области обслуживания клиентов и поддержки пользователей через helpdesk. Рассматриваются разнообразные алгоритмы машинного обучения.
статья, добавлен 18.02.2025Решение задачи классификации переводов клиентов банка на легальные и мошеннические с использованием средств машинного обучения. Обнаружение мошеннических транзакций средствами машинного обучения. Решение задачи построения ансамбля классификаторов.
дипломная работа, добавлен 18.07.2020Способ по предсказанию успешности реакции с помощью методов машинного обучения. Модели с использованием методов глубокого обучения, решающие задачи генерации потенциально неуспешных реакций и классификации реакций на успешно проходящие и некорректные.
дипломная работа, добавлен 24.10.2020Проблема выбора оптимального метода подбора персонифицированного лечения пациента. Исследование метода взвешенных исходов для анализа выживаемости на выборке пациентов с детским лимфобластным лейкозом. Применение данных для машинного обучения нейросети.
дипломная работа, добавлен 27.08.2016Применение СУБД для обработки большого объема данных в современных проектах машинного обучения и анализа данных. Анализ огромных объемов информации, используемых в данных приложениях. Обеспечение эффективной интеграции с приложениями и ресурсами данных.
статья, добавлен 14.12.2024Возможность применения машинного обучения при классификации спама. Структура файла "spam". Программный код использования библиотеки pandas, перевода категориальных признаков в числовые. Код тестирования различного количества нейронов, его анализ.
статья, добавлен 17.02.2019Возможности применения технологии блокчейн для повышения эффективности работы методов машинного обучения. Тенденции практического применения нейронных сетей и технологии блокчейн. Формирование обучающих выборок, сбор данных распределенными системами.
статья, добавлен 10.05.2022Методы churn modeling, их преимущества и недостатки. Сравнение методов машинного обучения, которые могут помочь улучшить точность прогноза оттока клиентов. Оценки их эффективности с помощью метрик качества: точность, auc, precision, recall и fl-score.
статья, добавлен 12.12.2024Исследование методов классификации, включая k ближайших соседей, метод опорных векторов, метод Байеса и нейронные сети. Рассмотрена эффективность применение каждого из методов в работе helpdesk подразделения. Каждый метод обладает особенными параметрами.
статья, добавлен 08.12.2024Обучение с учителем и формальная запись задачи классификации. Каскадный классификатор, выбор предметной области и обзор реализаций методов машинного обучения. Мобильные платформы и изучение инструментов разработки. Обучение каскадного классификатора.
дипломная работа, добавлен 11.07.2016Разработка методики оценки действий оператора эргатической системы "Летчик–Самолет" на этапе посадки. Описание методов машинного обучения с учителем: метода опорных векторов и градиентного бустинга деревьев. Тестирование алгоритмов машинного обучения.
статья, добавлен 28.11.2016Общая характеристика статьи, описывающей алгоритм рекомендации перемещения метода с помощью машинного обучения. Рассмотрение основных особенностей применения методов машинного обучения для автоматической рекомендации рефакторинга "перемещение метода".
дипломная работа, добавлен 01.12.2019Алгоритмы для решения задачи бинарной классификации. Подготовка данных для создания модели. Разработка предиктивной модели для прогнозирования возможности продажи дополнительных услуг телекоммуникационного оператора с целью решения маркетинговых задач.
дипломная работа, добавлен 27.08.2018Основные понятия и существующие алгоритмы машинного обучения, особенности их применения в информационных системах. Подходы к обработке естественного языка. Вызовы и ограничения применения машинного обучения в информационных системах, его перспективы.
курсовая работа, добавлен 20.05.2023Исследование задачи машинного обучения. Распознавание на изображении образа кошки. Пример распознавания лиц на Facebook. Пример простейшей схемы нейросети. Пример отображения некоторых архитектур нейросетей. Анализ программ-поисковиков в Интернете.
статья, добавлен 13.03.2019Исследование возможностей анализа исходных данных временных рядов и прогнозирования изменений переменных величин в Excel. Характеристика методов, предлагаемых электронными таблицами и их практическое применение. Расчет возможных ошибок прогноза.
лабораторная работа, добавлен 11.06.2013Анализ продаж фирмы продукции фирмы ООО "НОРД". Прогнозирование дальнейшего объема продаж на кратковременный период с применением инструментов программной среды Statistica (нейронных сетей и модели АРПСС). Сравнение результатов используемых методов.
статья, добавлен 28.01.2017Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.
дипломная работа, добавлен 28.08.2020Исследование особенностей применения методов машинного обучения для выявления преступников по фотографиям. Определение необходимости обучения цифровой грамотности. Рассмотрение и характеристика основных причин масса мифов вокруг software engineering.
доклад, добавлен 09.10.2022Построение модели машинного обучения для обработки входящих запросов в службу технической поддержки. Решение задачи классификации запросов в службу технической поддержки при помощи оригинального алгоритма, учитывающего специфику предметной области.
статья, добавлен 25.04.2022Характеристика многошаговых методов Адамса (явного и неявного), прогноза и коррекции. Специфика их описания и принципов, анализ применения к конкретной задаче, код программы решения данных методов на языке программирования Borland C++ Builder 6.
курсовая работа, добавлен 01.12.2009Способы представления и редактирования полученных данных приложениями баз данных. Иерархия классов, обеспечивающих функционирование набора данных. Параметры запросов и хранимых процедур. Возможности автоматического состояния и изменения набора данных.
лекция, добавлен 14.03.2014Изучение основных метеорологических и стандартных метрик классификации в решении задачи детекции облачности. Проверка гипотезы касательно источников данных и их влияние на результат модели. Эксперименты с архитектурами моделей прогнозирования облачности.
дипломная работа, добавлен 20.08.2020