Резонансные краевые задачи и вариационные неравенства эллиптического типа с разрывными нелинейностями без условий Ландесмана-Лазера
Задача о вариационном неравенстве. Необходимость разработки теории краевых задач с разрывными по фазовой переменной нелинейностями. Некоэрцитивные вариационные неравенства с непрерывными и многозначными нелинейностями. Условие Ландесмана-Лазера.
Подобные документы
Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.
курсовая работа, добавлен 08.10.2013Ознакомление с задачами, решаемыми с помощью вспомогательных вариационных задач. Рассмотрение процесса решения задачи о критических оборотах вала. Исследование и анализ зависимости параметра квадратичной вариационной задачи от числа краевых условий.
статья, добавлен 26.04.2019Описание метода векторного преобразования Фурье с разрывными коэффициентами. Подробная иллюстрация на примере динамической задачи теории упругости, техники применения указанного метода к решению задач математической физики в случае неоднородных сред.
статья, добавлен 31.05.2013- 4. Алгоритм комбинированного метода решения конечноэлементных задач с нелинейностями различного типа
Описание нового итерационного алгоритма на основе метода конечных элементов, разработанного для решения контактных задач механики деформируемого твердого тела. Метод решения нелинейных систем уравнений как сходящейся последовательности линейных задач.
статья, добавлен 27.05.2018 Систематизация теоретического материала по теме "Неравенства и оценка в текстовых задачах" и его применение к решению. Разработка типологии задач, в решении которых используется неравенства и оценка текстовых задач. Задачи, решаемые системой неравенств.
курсовая работа, добавлен 25.02.2019Изучение вариационных неравенств в качестве инструмента для построения математической модели задачи потокового равновесия в транспортной сети, задаваемой транспортные потоки из частного автотранспорта. Распараллеливание методов при численной реализации.
статья, добавлен 02.02.2019- 7. Определение функций источника систем уравнений составного типа для некоторых начально-краевых задач
Решение задачи идентификации функции источника одномерной системы параболического и эллиптического уравнений в частных производных второго порядка. Исследование задачи Коши, второй краевой и обратных задач для эволюционных систем составного типа.
статья, добавлен 29.04.2018 Сформулированы модельные краевые задачи и результаты автора для уравнений смешанного типа в канонических областях. Эти задачи возникают в теории тонких оболочек, в теории самолетостроения. Приведены основные результаты отечественных и зарубежных авторов.
статья, добавлен 30.01.2019Методика составления и анализ математической модели маятника с двумя нелинейностями, ось подвеса которого можно перемещать по горизонтальной прямой. Кусочно-линейная и кусочно-постоянная аппроксимация нелинейности. Сопровождающая квадратичная задача.
контрольная работа, добавлен 26.05.2014Неравенства типа Колмогорова и их роль при решении задач теории приближения. Исследование возможности продолжения произвольной функции f, принадлежащей к множеству L с любого отрезка I монотонности f на всю ось с сохранением норм f и f(r) на отрезке.
статья, добавлен 30.10.2016Случай переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Решение задач методами краевых условий, прогонки С.К. Годунова, половины констант. Применяемые формулы построчного ортонормирования.
научная работа, добавлен 18.10.2010Кратчайшие линии на простейших поверхностях. Свойства плоских и пространственных кривых. Геодезические линии. Изопериметрическая задача. Задачи на равновесие системы упругих нитей. Принцип Ферма и его следствия. Задача о наименьшей поверхности вращения.
учебное пособие, добавлен 11.11.2011Формулы теории матриц для систем обыкновенных дифференциальных уравнений. Формулы построчного ортонормирования переносимых матричных уравнений краевых условий жестких краевых задач. Вариант расчета вектора частного решения систем неоднородных ОДУ.
контрольная работа, добавлен 17.07.2016Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.
книга, добавлен 19.05.2011Получение необходимых и достаточных условий справедливости интегрально-дифференциального неравенства. Особенности использования методов исследования вариационных задач, разработанные Пермским семинаром по функционально-дифференциальным уравнениям.
статья, добавлен 26.04.2019Получение новых достаточных условий разрешимости краевых задач для различных классов квазилинейных функционально-дифференциальных уравнений с необратимой линейной частью. Проблема разрешимости операторного уравнения, характеристика используемых теорем.
автореферат, добавлен 26.01.2018Изучение способов решения квадратного неравенства: аналитического и графического. Исследование неравенств с одной переменной. Рассмотрение особенностей неравенств, содержащих знак модуля. Определение количества целочисленных решений неравенства.
презентация, добавлен 15.03.2015Решение системы дифференциальных уравнений 8-го порядка. Случай переменных коэффициентов. Формула для вычисления вектора частного решения. Перенос краевых условий в произвольную точку интервала интегрирования. Счет методом прогонки С.К. Годунова.
курсовая работа, добавлен 25.03.2010Решение задачи Коши в случае переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Начало счета методом прогонки.
научная работа, добавлен 01.02.2013Рассмотрение особенностей решения неравенств с модулем. Изображение на координатной плоскости множества решений неравенства. Закономерности построения графика параболы. Характеристика основных методов решения задач с заданными параметрами неравенств.
учебное пособие, добавлен 10.04.2015Исследуются смешанные задачи для гиперболического уравнения с нелинейными граничными условиями. Доказано существование единственного обобщенного решения поставленных задач. Оценка уравнения с помощью неравенства Коши преобразованием части уравнения.
статья, добавлен 31.05.2013Способ доказательства существования и единственности решения краевой задачи для уравнения третьего порядка с кратными характеристиками методом интегралов энергии и методом эквивалентной редукции к интегральному уравнению Фредгольма второго рода.
статья, добавлен 30.09.2012Новые признаки разрешимости квазилинейных краевых задач для абстрактных функционально-дифференциальных уравнений с необратимой линейной частью и систем квазилинейных операторных уравнений. Разрешимость задач для уравнения с отклоняющимся аргументом.
автореферат, добавлен 17.12.2017Уравнение с оператором Лаврентьева-Бицадзе с двумя линиями изменения типа. Краевые задачи (задачи Трикоми, Дирихле и другие) для уравнений смешанного типа с одной или несколькими линиями изменения типа. Пример решения задачи, критерий единственности.
статья, добавлен 17.07.2018Доказательство теоремы существования и единственности решения аналога задачи Франкля для уравнения смешанного параболо-гиперболического типа третьего порядка. Представление теоремы об однозначной разрешимости нелокальной внутренне-краевой задачи.
автореферат, добавлен 27.03.2018