Кто на самом деле вычислил число Пи
Ф. Беллар как один из ученых вычисливший число Пи с рекордной точностью. Личная жизнь Беллара и формула вычисления числа. Числа, которыми можно назвать и вычислить Пи: подходящие (приближенные) и десятичные дроби, заглавные латинские буквы и целые числа.
Подобные документы
Число как основное понятие математики. Натуральные числа, их функции. Вавилонские шестидесятеричные дроби. Нумерация и дроби в Древней Греции. Развитие идеи отрицательного количества в Европе. Векторные, действительные рациональные и иррациональные числа.
реферат, добавлен 02.03.2017Концепция иррациональных чисел в античной математике. Принятие таких понятий как ноль, отрицательные числа, целые и дробные числа в средние века. Появление комплексных чисел в Новое время. Доказательство иррациональности числа Пи Ламбертом, Лежандром.
реферат, добавлен 08.02.2017Формування в учнів початкової школи розуміння цілого та його частин. Розв'язування задач, пов'язаних зі знаходженням частини числа та числа за відомою його частиною. Дроби та їх зображення. Знаходження дробу від числа та числа за величиною його дробу.
презентация, добавлен 10.11.2019Роль числа в познании и конституировании мира. Число как основное понятие математики. Понятие натурального числа. Число как первая сущность, определяющая все многообразные внутрикосмические связи мира, основанного на мере, соразмерного и гармоничного.
доклад, добавлен 11.01.2012Число е - удивительный математический элемент, свойства которого можно наблюдать в решениях определённых задач и окружающем пространстве. Характеристика основных формул, применяющихся для определения данной константы. Сущность метода Монте-Карло.
творческая работа, добавлен 26.04.2019- 6. Дійсні числа
Раціональні числа як нескінченні десяткові періодичні дроби. Особливості основних теорем для розширення множини раціональних чисел. Ірраціональне число як нескінченний неперіодичний десятковий дріб. Модуль дійсного числа, характеристика його властивостей.
курсовая работа, добавлен 15.06.2016 Определение понятия "комплексные числа", их алгебраическая форма, вычисления суммы и произведения, основные этапы изучения. Тригонометрическая форма комплексного числа, его геометрическая модель. Основные действия: сложение, вычитание, умножение, деление.
презентация, добавлен 26.02.2015Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.
учебное пособие, добавлен 04.02.2012Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.
учебное пособие, добавлен 16.06.2015Числовые системы и история их появления. Действительное число как математическая абстракция, возникшая из потребности человека в измерении геометрических и физических величин окружающего мира. Бесконечные десятичные дроби. Проведение извлечение корня.
курсовая работа, добавлен 12.02.2014Биография Пифагора и его школа. Четно-нечетные числа как числа, которые будучи разделены пополам, не делятся. Таблица десяти чисел. Совершенное число как число, сумма дробных частей которого равна самому числу. Влияние пифагорейских гетерий на политику.
реферат, добавлен 06.03.2010Аналіз історії виникнення основної проблеми ірраціонального числа. Доцільні суми як нескінченні десяткові періодичні дроби. Модуль числової дійсності та його властивості. Особливості геометричного змісту величини повноважного чисельного результату.
курсовая работа, добавлен 28.01.2016Узагальнення та систематизація надбаних учнями знань, вмінь оперувати поняттями додатне, від'ємне число, цілі та раціональні числа, сприяння вихованню у них почуття самоконтролю. Різнорівневі завдання для самостійної роботи на аркушиках через копірку.
разработка урока, добавлен 20.09.2019- 14. Число "Пи"
"Пи" - математическая константа, равная отношению длины окружности к длине её диаметра. Методы определения значения числа. Анализ математических формул древних ученных: Архимеда, Людольфа ван Цейлена. Вычисление знаков после запятой у числа "Пи".
доклад, добавлен 31.01.2018 Приближенные числа и оценка погрешностей при вычислениях. Значащая цифра. Число верных знаков. Правила округления чисел. Точность определения аргумента для функции, заданной таблицей. Решение и формулы математических уравнений. Значение функций.
контрольная работа, добавлен 04.10.2014Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.
статья, добавлен 30.03.2017- 17. Протилежні числа
Методика формування уявлення про суть поняття "протилежні числа". Способи знаходження й правильного запису числа, протилежного до даного. Розв’язувати рівнянь, що передбачають застосування поняття числа, протилежного до даного. Приклади протилежних чисел.
конспект урока, добавлен 19.09.2018 Натуральное число как первый математический объект и его определение в математическом образовании, возникновение однородности. Родовое содержание натурального числа как развивающаяся структура количественных отношений. Видовые формы натурального числа.
доклад, добавлен 06.10.2011Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.
конспект урока, добавлен 20.09.2018Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.
реферат, добавлен 15.12.2016Анализ изучения важнейшей математической константы, которая выражает отношение длины окружности к ее диаметру. Практическое применение числа "Пи". Проведение исследования современных представлений о культуре. Взаимосвязь пирамиды Хеопса и числа "Пи".
презентация, добавлен 05.11.2019Рассмотрение теоретико-множественного истолкования натурального числа и понятия преемственности. История формирования понятия натурального числа в начальной школе. Педагогические технологии формирования понятия натурального числа в современной школе.
реферат, добавлен 12.11.2016- 23. Числа Эйлера
Числа Эйлера первого порядка: определения, треугольник Эйлера. Рекуррентные формулы, дополнительные тождества. Связь натуральных степеней и последовательных биномиальных коэффициентов. Зеркальное отражение перестановки. Определение чисел Стирлинга.
реферат, добавлен 01.10.2013 - 24. Комплексні числа
Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.
контрольная работа, добавлен 16.07.2017 Сравнение числа Пи с другими математическими величинами и их визуализация. Изучение методов использования компьютерных систем для интерпретации математических величин. Анализ возможности использования среды КСС "Demomod" при визуализации моделей числа.
статья, добавлен 22.01.2017