Классический метод вариационного исчисления
Задачи об оптимизации объекта управления в динамике. Общая задача Лагранжа, ее значение. Условие стационарности функционала, выраженное уравнениями Эйлера-Лагранжа. Расчет оптимального управления классическим методом вариационного исчисления уравнения.
Подобные документы
- 1. Оптимизация стационарных объектов по обобщенным скалярным критериям при детерминированных сигналах
Характеристика возможных задач оптимизации объекта по точности в зависимости от формы функционала обобщенного скалярного критерия оптимальности. Оптимальное управление объектом по произвольному закону. Методы классического вариационного исчисления.
лекция, добавлен 23.07.2015 Метод множителей Лагранжа позволяет отыскивать максимум или минимум функции при ограничениях-равенствах. Безусловный и условный экстремумы в задаче Лагранжа. Применение неопределенных множителей Лагранжа сводит задачу оптимизации с ограничениями к задаче.
курсовая работа, добавлен 20.01.2009Простейшая задача вариационного исчисления. Основные методы выведения уравнения Эйлера-Бернулли. Необходимые условия второго порядка для статистических задач в вариационном исчислении Лежандра. Условия Вейерштрасса для точки излома допустимой траектории.
презентация, добавлен 21.08.2015Решение линейного уравнения Фоккера-Планка, его применение и особенности. Постановка вариационной задачи максимизации информационной энтропии по Клоду Шеннону. Анализ параметров решения уравнения методом моментов, сущность вариационного исчисления.
дипломная работа, добавлен 14.07.2016Поиски оптимальных решений. Математические основы оптимизации вариационное исчисление и численные методы. Практическое использование математических методов оптимизации. Решение задачи графическим методом, с помощью Excel, классическим симплекс методом.
курсовая работа, добавлен 06.11.2012Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.
курсовая работа, добавлен 08.10.2013Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.
контрольная работа, добавлен 13.08.2014Вариационное исчисление решения задач, связанных с минимизацией функционала по уравнению Эйлера. Минимизация заданного функционала по методу Ритца. Графики приближения. Приближённое решение краевой задачи для уравнения Эйлера методом конечных разностей.
курсовая работа, добавлен 23.04.2011Получение неклассических первых интегралов в простейшей задаче вариационного исчисления. Разработка получения новых автомодельных решений уравнений ламинарного пограничного слоя при сверхзвуковых режимах обтекания в плоском и осесимметричном случаях.
автореферат, добавлен 28.03.2018Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.
контрольная работа, добавлен 10.01.2012Алгоритм решения задачи на безусловный экстремум с использованием необходимых и достаточных условий. Метод множителей Лагранжа как один из общих подходов, используемых при решении задач оптимизации на основании теории дифференциального исчисления.
дипломная работа, добавлен 26.07.2018Особливості застосування математичної теорії в програмуванні. Інтерполювання функцій алгебраїчними многочленами. Створення програми, яка демонструє інтерполювання функції в заданих вузлах методом Лагранжа. Загальна задача апроксимації та інтерполяції.
курсовая работа, добавлен 23.04.2011Линейное программирование как метод оптимизации. Общая задача линейного программирования и ее формулировка. Геометрическая интерпретация задачи, графический метод ее решения и область применения. Основные примеры задач, решаемых графическим методом.
реферат, добавлен 11.11.2010Классификация линейных интегральных уравнений. Уравнения Фредгольма и Вольтерра. Краевая задача на собственные значения и собственные функции (задача Штурма-Лиувилля). Поле экстремалей и функция Вейерштрасса. Изопериметрическая задача и задача Лагранжа.
курс лекций, добавлен 18.04.2014Особенности оценки роли множителя Лагранжа при нахождении условного экстремума функционала для движущейся механической системы. Функционал как принцип действия для механической системы с двумя степенями свобод, способы процедуры его восстановления.
статья, добавлен 27.02.2013Описание связи между неизвестной функцией и ее производными дифференциальным уравнением. Решение уравнения Клеро в параметрическом виде. Определение огибающей семейства прямых. Общее решение уравнения Лагранжа. Дифференцирование равенства по переменной x.
реферат, добавлен 21.05.2021Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Общая схема численных методов. Локальная ошибка дискретизации метода Эйлера. Применение многошаговой системы перехода от точки (Xi, Yi) к следующей.
контрольная работа, добавлен 02.05.2013Общая задача управления. Функция Гамильтона. Дифференциальные уравнения для фазовых координат. Интерпретация сопряженных переменных. Чувствительность оптимального значения целевого функционала к изменению начального момента времени и фазового состояния.
презентация, добавлен 21.08.2015Решение дифференциального уравнения численным методом. Исправленный и модифицированный метод Эйлера. Значение метода Эйлера. Описание алгоритма главной программы. Сравнение результатов полученных при использовании программы, а также ручным способом.
контрольная работа, добавлен 20.07.2012Понятие условного экстремума и способы его определения. Разработка алгоритма нахождения экстремума функции методом множителей Лагранжа. Применение данного метода при составлении плана выпуска изделий, обеспечивающего максимальную прибыль от их реализации.
курсовая работа, добавлен 20.10.2012Задачи управления с дискретным временем, исследуемые методом динамического программирования. Метод Беллмана в моделях оптимального управления и транспортного процесса. Численный алгоритм решения уравнения, нахождение оптимальной стратегии управления.
дипломная работа, добавлен 15.09.2018Сущность и основные теоремы дифференциального исчисления, их главные отличия. Процесс построения графика. Описание теоремы Вейерштрасса и Лагранжа, их использование. Обобщенная формула конечных приращений. Раскрытие неопределенностей и правила Лопиталя.
лекция, добавлен 29.09.2013Выражение для полного дифференциала. Необходимое условие первого порядка для существования локального максимума. Максимизация функции двух переменных при одном ограничении. Полный дифференциал функции. Интерпретация множителей Лагранжа. Матрица Якоби.
презентация, добавлен 21.08.2015