Численные методы решения дифференциальных уравнений
Метод Эйлера: сущность и основное содержание, принципы и направления практического применения, определение погрешности. Примеры решения задачи в Excel. Метод разложения решения в степенной ряд. Понятие и погрешность, решение с помощью метода Пикара.
Подобные документы
Изучение понятия и методов решения обыкновенных дифференциальных уравнений. Искомые функции непрерывного аргумента и замена их функциями дискретного аргумента. Разностное уравнение относительно сеточной функции - аппроксимация на сетке. Метод Эйлера.
презентация, добавлен 18.04.2013Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.
курсовая работа, добавлен 29.11.2014Теория решения диофантовых уравнений. Однородные уравнения. Общие линейные уравнения. Единственности разложения натурального числа на простые множители. Решение каждой конкретной задачи в целых числах с помощью разных методов. Основные неизвестные х и у.
материалы конференции, добавлен 13.03.2009Понятия и термины вариационного исчисления. Понятие функционала, его первой вариации. Задачи, приводящие к экстремуму функционала, условия его минимума. Прямые методы вариационного исчисления. Практическое применение метода Ритца для решения задач.
курсовая работа, добавлен 08.04.2015Описание метода потенциалов Математическая постановка задачи об оптимальных перевозках. Метод решения задачи об оптимальных перевозках средствами Ms Excel. Постановка параметрической транспортной задачи, ее математическое и компьютерное моделирование.
курсовая работа, добавлен 21.10.2014Применение математических и вычислительных методов в планировании перевозок. Понятие и виды транспортных задач, способы их решения. Особенности постановки задачи по критерию времени. Решение транспортной задачи в Excel, настройка параметров решателя.
курсовая работа, добавлен 12.01.2011Основные понятия и теоремы систем линейных уравнений, характеристика методов их решения. Критерий совместности общей системы. Структура общих решений однородной и неоднородной систем. Матричный метод решения и обобщение. Методы Крамера и Гаусса.
курсовая работа, добавлен 13.11.2012Разложение многочлена на множители. Область допустимых значений уравнения как множество всех действительных чисел. Утверждения, полезные при решении уравнений. Примеры упражнений, связанных с понятием обратной функции, нестандартные методы решения.
контрольная работа, добавлен 22.12.2011Проверка совместности системы уравнений, ее решение матричным методом. Координаты вектора в четырехмерном пространстве. Решение линейных неравенств, определяющих внутреннюю область треугольника. Определение пределов, производных; исследование функции.
контрольная работа, добавлен 21.05.2013Культ античной Греции. Вопросы элементарной геометрии. Книга Диофанта "Арифметика". Решение неопределенных уравнений, диофантовых уравнений высоких степеней. Составление системы уравнений. Нахождение корней квадратного уравнения, метод Крамера.
реферат, добавлен 18.01.2011- 111. Решение неравенств
Сущность метода системосовокупностей как одного из распространенных и универсальных методов решения неравенств любого типа. Обобщение метода интервалов на тригонометрической окружности. Эффективность и наглядность графического метода решения задач.
методичка, добавлен 14.03.2011 Метод Гаусса–Жордана: определение типа системы, запись общего решения и базиса. Выражение свободных переменных с использованием матричного исчисления. Нахождение координат вектора в базисе. Решение системы уравнений по правилу Крамера и обратной матрицей.
контрольная работа, добавлен 17.12.2010- 113. Численные методы
Численные методы представляют собой набор алгоритмов, позволяющих получать приближенное (численное) решение математических задач. Два вида погрешностей, возникающих при решении задач. Нахождение нулей функции. Метод половинного деления. Метод хорд.
курс лекций, добавлен 06.03.2009 Графический и симплексный методы решения ОЗЛП. Построение функции цели, образующая совместно с системой ограничений математическую модель экономической задачи. Нахождение неотрицательного решения системы линейных уравнений. Решение транспортной задачи.
лабораторная работа, добавлен 10.04.2009Общая характеристика и особенности двух методов решения обычных дифференциальных уравнений – Эйлера первого порядка точности и Рунге-Кутта четвёртого порядка точности. Листинг программы для решения обычного дифференциального уравнения в Visual Basic.
курсовая работа, добавлен 04.06.2010Примеры операций над матрицами. Ранг матрицы. Обратная матрица. Системы линейных уравнений. Метод Гаусса для решения систем линейных уравнений, две его составляющие: прямой и обратный ходы. Решение системы по формулам Крамера. Построение параболы.
контрольная работа, добавлен 05.02.2009Анализ метода простой итерации для решения систем линейных алгебраических уравнений и реализация его в виде двух программ, каждая из которых использует свой собственный способ перехода от системы одного вида к другому. Программные и технические средства.
курсовая работа, добавлен 27.03.2011Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа, добавлен 07.09.2010Изучение истории квадратных уравнений. Анализ общего правила решения квадратных уравнений, изложенного итальянским математиком Леонардо Фибоначчи. Решение квадратных уравнений с помощью циркуля и линейки, с помощью номограммы, способом "переброски".
презентация, добавлен 16.01.2011Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.
реферат, добавлен 09.06.2011Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.
лекция, добавлен 24.11.2010- 122. Основы вычислительной математики и использование системы Mathcad 14 для решения вычислительных задач
Методы, используемые при работе с матрицами, системами нелинейных и дифференциальных уравнений. Вычисление определенных интегралов. Нахождение экстремумов функции. Преобразования Фурье и Лапласа. Способы решения вычислительных задач с помощью Mathcad.
учебное пособие, добавлен 15.12.2013 Понятие линейного программирования и его основные методы. Формулировка задачи линейного программирования в матричной форме и ее решение различными методами: графическим, табличным, искусственного базиса. Особенности решения данной задачи симплекс-методом.
курсовая работа, добавлен 30.11.2010Введение в численные методы, план построения вычислительного эксперимента. Точность вычислений, классификация погрешностей. Обзор методов численного интегрирования и дифференцирования, оценка апостериорной погрешности. Решение систем линейных уравнений.
методичка, добавлен 23.09.2010Матричный метод решения систем линейных алгебраических уравнений с ненулевым определителем. Примеры вычисления определителя матрицы. Блок-схема программы, описание объектов. Графический интерфейс, представляющий собой стандартный набор компонентов Delphi.
курсовая работа, добавлен 29.06.2014