Пирамида - тип многогранников

Пирамида — многогранник, основание которого — многоугольник, а остальные грани — треугольники, имеющие общую вершину. История развития пирамиды; виды, элементы, углы, развёртка, свойства; теоремы, связывающие ее с другими геометрическими телами; формулы.

Подобные документы

  • Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.

    курсовая работа, добавлен 05.09.2009

  • Краткий биографический очерк жизненного пути Пифагора. История появления теоремы Пифагора, ее дальнейшее распространение в мире. Формулировка и доказательство теоремы с помощью различных методов. Возможности применения теоремы Пифагора к вычислениям.

    презентация, добавлен 17.11.2011

  • Поиск кратчайших путей для пар вершин взвешенного ориентированного графа с весовой функцией. Включение матрицы в алгоритм Флойда, содержащую вершину, полученную при нахождении кратчайшего пути. Матрица, которая содержит длины путей из вершины в вершину.

    презентация, добавлен 16.09.2013

  • Главные свойства логарифмов. Общий вид формулы перехода к другому основанию. Возрастание логарифмической функции с основанием 4 и 2, убывание с основанием 0,3. Практический пример решения первого и второго неравенства системы, обоснование результата.

    презентация, добавлен 29.10.2013

  • Многоугольники, теорема Бойяи-Гервина. Лемма о целых решениях системы однородных линейных уравнений с рациональными коэффициентами. Понятия для доказательства теоремы Дена-Кагана. Задача на деление квадрата на восемь остроугольных треугольников.

    курсовая работа, добавлен 27.05.2012

  • Доказательство теоремы о выявлении алгебраической замкнутости поля С (то есть существования корня у любого отличного от константы полинома с комплексными коэффициентами) согласно с принципами лемм Даламбера и о достижении точной нижней грани значений.

    реферат, добавлен 01.03.2010

  • Аналитические свойства интегральных преобразований. Интеграл Коши на различных кривых. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции. Вывод формулы Коши и формулировка следствий из данной формулы.

    курсовая работа, добавлен 10.04.2011

  • Изучение кручения стержней, имеющих в сечении правильный многоугольник (призматический, тонкостенный с открытым профилем), круг и эллипс (круглый вал переменного диаметра, эллиптический). Практическое решение задач Вебера, Сен-Венана и Лейбензона.

    дипломная работа, добавлен 13.02.2010

  • Логарифмическая функция, ее основные свойства и график. Простейшие логарифмические уравнения. Логарифмо-показательные уравнения. Переход к логарифмам одного основания с использованием формулы перехода от логарифма одного основания к логарифму другого.

    курсовая работа, добавлен 26.11.2013

  • Прямоугольник - параллелограмм, у которого все углы прямые. Описание основных свойств и признаков прямоугольника. Решение задачи, в условии которой дано прямоугольный участок земли, разделенный на две части биссектрисой. Нахождение площади прямоугольника.

    презентация, добавлен 10.02.2011

  • Определение развертки многогранника, теорема о развертке А.Д. Александрова. Теорема Д. Бликера, рассматривающая два правильных многогранника - куб и додекаэдр, условие треугольности граней как технический момент, позволивший доказать свою теорему.

    реферат, добавлен 25.09.2009

  • Первое доказательство существования иррациональных чисел. Развитие теории пропорций Евдоксом Книдским. Теоремы, корень из 2 - иррациональное число. Трансцендентное число: сущность понятия, свойства, примеры, история. История уточнения числа пи.

    контрольная работа, добавлен 27.11.2011

  • Решение системы уравнений по формулам Крамера и методом Гаусса. Нахождение объема пирамиды, площади грани, величины проекции вектора с помощью средств векторной алгебры. Пример определения и решения уравнения стороны, высоты и медианы треугольника.

    контрольная работа, добавлен 22.04.2014

  • Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.

    учебное пособие, добавлен 06.11.2011

  • Основатели учения о золотом сечении. Самый "правильный" многогранник. Математическое пропорциональное содержание пентаграммы. Золотое сечение в архитектуре, в живописи и в живых организмах. Пропорции Покровского Собора на Красной площади в Москве.

    презентация, добавлен 16.10.2013

  • Понятие и классификация углов, положительные и отрицательные углы. Измерение углов дугами окружности. Единицы их измерения при использовании градусной и радианной мер. Характеристики углов: между наклонной и плоскостью, двумя плоскостями, двугранного.

    реферат, добавлен 18.08.2011

  • Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.

    творческая работа, добавлен 20.05.2009

  • Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

    научная работа, добавлен 18.01.2010

  • Теоретические основы изучения площадей многоугольников. Вычисление площадей в древности. Различные подходы к изучению понятий "площадь", "многоугольник", "площадь многоугольника". Вычисление площади многоугольника по координатам его вершин. Формула Пика.

    дипломная работа, добавлен 24.02.2010

  • Понятие и сущность факториала, его обозначение и применение в математических исчислениях. Основные свойства факториалов, история создания и способы представления формулы Стирлинга-Муавра. Научная деятельность Джеймса Стирлинга и Абрахама де Муавра.

    презентация, добавлен 23.06.2013

  • Основные свойства, прямой и наклонный виды призмы. Площадь поверхности призмы и площадь ее боковой поверхности: доказательство теоремы. Сечение призмы плоскостью. Свойства правильной призмы, особенности ее сечения и симметрия. Оси и плоскости симметрии.

    презентация, добавлен 20.12.2010

  • Пьер де Ферма сделал почти 370 лет назад свою запись на полях арифметики Диофанта. Натуральные взаимно простые числа, не имеющие общих целых множителей, кроме 1. Пример справедливости приведенного доказательства.

    статья, добавлен 19.12.2006

  • Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.

    курсовая работа, добавлен 11.07.2012

  • Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.

    учебное пособие, добавлен 07.05.2012

  • Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.

    доклад, добавлен 17.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.