Основные понятия теории множеств. Алгебра множеств
Понятие множества и его элементов. Обозначение принадлежности элемента множеству. Конечные и бесконечные множества. Строгое и нестрогое включение. Способы задания множеств. Равенство множеств и двухсторонее включение. Диаграммы Венна для трех множеств.
Подобные документы
- 76. Функции
Способы задавания функции: табличный, графический и аналитический. Область определения и область значений функции, промежутки ее знакопостоянства. Свойства постоянной функции. Множества значений функции y=arctgx. Основные свойства функции y=sinx.
реферат, добавлен 22.06.2019 Проведение исследования на уроках обобщающего повторения курса математики в контексте ведущего понятия "порядковая структура". Примеры алгебраических и геометрических бинарных отношений. Включение учащихся в исследовательскую и проектную деятельность.
курсовая работа, добавлен 01.12.2014Попытка доказательства частного случая великой теоремы Ферма. Преобразования уравнения xn+yn=zn, позволяющие получить квадратное уравнение. Показано, что вышеназванное равенство для трех действительных разных целых положительных чисел не выполняется.
монография, добавлен 27.12.2012Системы линейных уравнений. Функции: понятия и определения. Комплексные числа, действия над ними. Числовые, функциональные, тригонометрические ряды. Дифференциальные уравнения. Множества, операции над ними. Теория вероятностей и математической статистики.
учебное пособие, добавлен 29.10.2013Основные определения математической логики, булевы и эквивалентные функции. Общие понятия булевой алгебры. Алгебра Жегалкина: высказывания и предикаты. Определение формальной теории. Элементы теории алгоритмов, рекурсивные функции, машина Тьюринга.
курс лекций, добавлен 08.08.2011- 81. Теорема Силова
Доказательство первой, второй и третей теоремы Силова. Описание групп порядка pq. Смежные классы по подгруппе и теорема Лагранжа. Классы сопряженных элементов. Нормализатор множества в группе. Теоремы о гомоморфизмах. Примеры силовских подгрупп.
курсовая работа, добавлен 21.04.2011 Понятие и признаки метрического пространства. Свойства топологических пространств. Замкнутые множества: внутренние, внешние и граничные точки. Топологические преобразования топологических пространств. Понятие и содержание двумерного многообразия.
курсовая работа, добавлен 28.04.2011Методика решения задач высшей математики с помощью теории графов, ее сущность и порядок разрешения. Основная идея метода ветвей и границ, ее практическое применение к задаче. Разбиение множества маршрутов на подмножества и его графическое представление.
задача, добавлен 24.07.2009Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.
презентация, добавлен 19.11.2013- 85. Теория сравнений
Основное понятие теории положительных (натуральных) чисел. Развитие стенографии для операций арифметики. Символический язык для делимости. Свойства и алгебра сравнений. Возведение сравнений в степень. Повторное возведение в квадрат. Малая теорема Ферма.
презентация, добавлен 04.06.2014 Стек: основные понятия и закономерности, описание переменных, процесс инициализации, проверка на чистоту и вершина. Механизм считывания элемента с последующим удалением. Понятие и характеристики очереди. Дек: порядок добавления и удаления элементов.
курсовая работа, добавлен 28.04.2011Понятие и содержание равносильных уравнений, факторы их оценивания. Теорема о равносильности уравнений и ее доказательство. Причины и пути приобретения посторонних корней при разрешении данных уравнений. Нахождение и сравнение множества решений.
презентация, добавлен 26.01.2011Динамические системы в математическом понимании. Определение функционирующей системы и системы процессов. Основные и неосновные переменные динамики систем, множества их значений, типовые кванторы. Определения и классификация динамических свойств.
курсовая работа, добавлен 04.05.2011История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.
курсовая работа, добавлен 20.12.2015- 90. Позиционные игры
Изучение общих сведений о матричных и антагонистических играх. Понятие позиционной игры, дерева, информационного множества. Рассмотрение принципа максимина и принципа равновесия. Оптимальность по Парето. Позиционная неантагонистическая игра, ее свойства.
курсовая работа, добавлен 17.10.2014 - 91. Конечные поля
Конструкции и свойства конечных полей. Понятие степени расширения, определенность поля разложения, примитивного элемента, строение конечной мультипликативной подгруппы поля. Составление программы, которая позволяет проверить функцию на примитивность.
курсовая работа, добавлен 18.12.2011 Раскрытие понятия об уравнение Дирака и вывод его решения в виде плоских волн. Обозначение матриц и рассмотрение их основных свойств. Определение понятия спинора и релятивистских обозначений пространственно-временных координат и метрических тензоров.
курсовая работа, добавлен 14.06.2011Знакомство с уравнениями и их параметрами. Решение уравнений первой степени с одним неизвестным, определение множества допустимых значений неизвестного. Понятие модуля числа, решение линейных уравнений с модулем и квадратных уравнений с параметром.
контрольная работа, добавлен 09.03.2011Понятия векторной алгебры: нулевой, единичный, противоположный и коллинеарный векторы. Проекция вектора на ось. Векторный базис на плоскости и в пространстве. Декартова прямоугольная система координат. Действия над векторами, заданными координатами.
презентация, добавлен 16.11.2014Теория динамического программирования. Понятие об оптимальной подструктуре. Независимое и полностью зависимое множество вершин. Задача о поиске максимального независимого множества в дереве. Алгоритм Брона-Кербоша как метод ветвей, границ для поиска клик.
реферат, добавлен 09.10.2012Упорядоченные множества. Решётки. Дистрибутивные решётки. Топологические пространства. Верхние полурешётки. Стоуново пространство. Множество простых идеалов с введенной на нём топологией.
дипломная работа, добавлен 08.08.2007- 97. Алгебра
Квадратные матрицы и определители. Координатное линейное пространство. Исследование системы линейных уравнений. Алгебра матриц: их сложение и умножение. Геометрическое изображение комплексных чисел и их тригонометрическая форма. Теорема Лапласа и базис.
учебное пособие, добавлен 02.03.2009 Линейная алгебра. Комплексные числа. Деление отрезка в данном отношении. Площадь треугольника и многоугольника. Сферические и цилиндрические поверхности. Замечательные и вычислительные пределы. Производства и дифференциал. Построение графика функций.
методичка, добавлен 19.06.2015Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.
курсовая работа, добавлен 26.05.2006М- и (М-1)-последовательности на основе произведения многочленов. Результаты по синтезу модели: структурная схема, методика построения по алгоритму Хемминга и по корреляционному моменту, аффинному преобразованию для заданного множества векторов.
контрольная работа, добавлен 24.07.2013