Гиперболическая геометрия

Основные математические постулаты Эвклида. Попытки математиков доказать пятый постулат "О параллельности" как теорему. Основные подходы к подходов к построению гиперболической геометрии, ее содержание, примеры и отличие от эвклидовой аксиоматики.

Подобные документы

  • Суть метода пространственной дискретизации. Основные способы замены производной первого порядка. Алгоритм метода конечных разностей. Разбиение математической модели конструкции на непересекающиеся элементы простой геометрии. Матрица контуров и сечений.

    презентация, добавлен 27.10.2013

  • Основные свойства векторов. Теории кривых и поверхностей. Натуральная параметризация. Формулы Сере-Френе и Эйлера. Уравнение соприкасающейся окружности. Теорема Менье. Индикатриса Дюпена. Индексные обозначения в дифференциальной геометрии поверхностей.

    курсовая работа, добавлен 01.02.2014

  • Исследование теоретического материала, касающегося задач, решаемых ограниченными средствами. Сущность и содержание теоремы Штейнера – Понселе. Задачи школьного курса геометрии, решаемые циркулем и линейкой, их исследование и методика разрешения.

    курсовая работа, добавлен 04.11.2015

  • Возникновение и основные этапы развития математики как науки о структурах, порядке и отношениях на основе операций подсчета, измерения и описания форм реальных объектов. Развитие знаний арифметики и геометрии в Древнем Востоке, Вавилоне и Древней Греции.

    презентация, добавлен 17.12.2010

  • Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.

    контрольная работа, добавлен 19.12.2014

  • Теоретические основы учебных исследований по математике с использованием динамических моделей. Содержание динамических чертежей. Гипотезы о свойствах заданной геометрической ситуации. Проектирование процесса обучения геометрии в общеобразовательной школе.

    курсовая работа, добавлен 26.11.2014

  • Этапы развития теории описания пространства, сущность принципа относительности, сформулированного Галилеем. Геометрия Минковского как описание пространства – времени, основные понятия ее описания. Разработка практических занятий по данным темам.

    дипломная работа, добавлен 24.02.2010

  • Роль идей и методов проективной геометрии в математической науке. Закономерности кривых второго порядка и кривых второго класса, основные теоремы Паскаля и Брианшона, описывающие замечательное свойство шестиугольника вписанного в кривую второго порядка.

    курсовая работа, добавлен 04.11.2013

  • Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.

    курсовая работа, добавлен 24.11.2009

  • Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.

    отчет по практике, добавлен 15.11.2014

  • Использование кривых второго порядка в компьютерных системах. Кривые второго порядка в 3d grapher. Жезл, гиперболическая спираль. Спираль Архимеда, логарифмическая спираль. Улитка Паскаля, четырех и трехлепестковая роза. Эпициклоида и гипоциклоида.

    реферат, добавлен 26.12.2014

  • Достижения древнегреческих математиков, живших в период между VI веком до н.э. и V веком н.э. Особенности начального периода развития математики. Роль пифагорейской школы в развитии математики: Платон, Евдокс, Зенон, Демокрит, Евклид, Архимед, Аполлоний.

    контрольная работа, добавлен 17.09.2010

  • Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.

    курсовая работа, добавлен 10.01.2010

  • Использование геометрических форм и линий в практической деятельности человека. Геометрия у древних людей. Природные творения в виде геометрических фигур, их распространение в животном мире. Геометрические комбинации в архитектуре, сфере транспорта, быту.

    реферат, добавлен 06.09.2012

  • Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.

    лабораторная работа, добавлен 05.01.2015

  • Основные задачи при изучении курса "Высшая математика", Числовые множества: натуральные, целые, рациональные, действительные числа. Модуль числа, интервал, окрестность, отрезок, числовая ось. Аналитическая геометрия, скалярное произведение и вектор.

    методичка, добавлен 26.10.2009

  • Методика преподавания темы "Параллельные прямые. Задачи, связанные с параллельными прямыми". Проведение практических уроков по теме "Параллельность прямых и использование признаков параллельности при решении геометрических задач".

    курсовая работа, добавлен 15.12.2003

  • Уравнение прямой, проходящей через данную точку перпендикулярно заданному нормальному вектору. Условия параллельности и перпендикулярности двух прямых. Условия пересечения, параллельности или совпадения двух прямых, заданных общими уравнениями.

    презентация, добавлен 19.12.2022

  • Математика как наука о числах, скалярных величинах и простых геометрических фигурах. Математические модели, отражающие объективные свойства и связи. Основные понятия математики, ее язык. Аксиоматический метод, математические структуры, функции и графики.

    реферат, добавлен 26.07.2010

  • Общая характеристика примеров нахождения точки пересечения двух прямых. Знакомство с условиями параллельности и перпендикулярности прямых, рассмотрение особенностей решения уравнений. Анализ способов нахождения углового коэффициента искомой прямой.

    презентация, добавлен 21.09.2013

  • Понятие и свойства многогранников. Геометрическое моделирование как неотъемлемая часть современного математического образования. Применение изображений пространственных фигур в преподавании геометрии, роль наглядных средств при изучении многогранников.

    дипломная работа, добавлен 28.10.2012

  • История возникновения и понятия дифференциальной геометрии, в которой плоские и пространственные кривые и поверхности изучаются с помощью дифференциального исчисления и методами математического анализа. Применение темы "Теория поверхностей " в школе.

    реферат, добавлен 23.04.2015

  • Использование разнообразных геометрических форм в современной архитектуре. Геометрические формы в разных архитектурных стилях. Изучение связи геометрии и архитектуры. Определение соответствия архитектурных зданий и сооружений геометрическим телам.

    презентация, добавлен 23.09.2019

  • Основные модели естествознания, подходы к исследованию явлений природы, её фундаментальных законов на основе математического анализа. Динамические системы, автономные дифференциальные уравнения, интегро-дифференциальные уравнения, законы термодинамики.

    курс лекций, добавлен 02.03.2010

  • Из истории геометрии, науки об измерении треугольников. Замечательные точки треугольника. Использование геометрических фигур в орнаментах древних народов. Бильярдная рамка, расстановка кеглей в боулинге. Бермудский треугольник. Построения прямых углов.

    презентация, добавлен 02.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.