Основные динамические свойства и их классификация

Динамические системы в математическом понимании. Определение функционирующей системы и системы процессов. Основные и неосновные переменные динамики систем, множества их значений, типовые кванторы. Определения и классификация динамических свойств.

Подобные документы

  • Математические и педагогические основы исследования системы линейных уравнений. Компьютерная математика Mathcad. Конспекты уроков элективного курса "Изучение избранных вопросов по математике с использованием системы компьютерной математики Mathcad".

    дипломная работа, добавлен 03.05.2013

  • Знакомство с уравнениями и их параметрами. Решение уравнений первой степени с одним неизвестным, определение множества допустимых значений неизвестного. Понятие модуля числа, решение линейных уравнений с модулем и квадратных уравнений с параметром.

    контрольная работа, добавлен 09.03.2011

  • Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.

    курсовая работа, добавлен 21.10.2011

  • Ненулевые элементы поля. Таблица логарифма Якоби. Матрица системы линейных уравнений. Перепроверка по методу Евклида. Формула быстрого возведения. Определение матрицы методом Гаусса. Собственные значений матрицы. Координаты собственного вектора.

    контрольная работа, добавлен 20.12.2012

  • Вероятность совместного выполнения двух неравенств в системе двух случайных величин. Свойства функции распределения. Определение плотности вероятности системы через производную от соответствующей функции распределения. Условия закона распределения.

    презентация, добавлен 01.11.2013

  • Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.

    курсовая работа, добавлен 26.05.2006

  • Понятие множества и его элементов. Обозначение принадлежности элемента множеству. Конечные и бесконечные множества. Строгое и нестрогое включение. Способы задания множеств. Равенство множеств и двухсторонее включение. Диаграммы Венна для трех множеств.

    презентация, добавлен 23.12.2013

  • М- и (М-1)-последовательности на основе произведения многочленов. Результаты по синтезу модели: структурная схема, методика построения по алгоритму Хемминга и по корреляционному моменту, аффинному преобразованию для заданного множества векторов.

    контрольная работа, добавлен 24.07.2013

  • Определение системы с двумя переменными, способ ее решения. Специфика преобразования линейных уравнений с двумя переменными. Способ сложения и замены переменных в этом виде уравнений, примеры их графиков. Алгоритм нахождения количества системы уравнений.

    презентация, добавлен 08.12.2011

  • Примеры основных математических моделей, описывающих технические системы. Математическая модель гидроприводов главной лебедки и механизма подъема-опускания самоходного крана. Описание динамики гидропривода механизма поворота стрелы автобетононасоса.

    реферат, добавлен 23.01.2015

  • Вводные понятия. Классификация моделей. Классификация объектов (систем) по их способности использовать информацию. Этапы создания модели. Понятие о жизненном цикле систем. Модели прогнозирования.

    реферат, добавлен 13.12.2003

  • Определение свойств чисел и выражение соотношений между подмножествами одного множества. Арифметический треугольник Паскаля. Алгоритм вычисления биномиальных коэффициентов. Рассмотрение комбинаторных тождеств: правила симметрии и свертки Вандермонда.

    курсовая работа, добавлен 10.10.2011

  • Существование и способ построения фундаментального набора решений для систем, состоящих из одного или нескольких неравенств. Метод последовательного уменьшения числа неизвестных. Системы однородных и неоднородных произвольных линейных неравенств.

    курсовая работа, добавлен 09.12.2011

  • Исследования устойчивости разомкнутой и замкнутой систем. Понятие разомкнутой системы – системы, в которой отсутствует обратная связь между входом и выходом, то есть управляемая величина (выходная) не контролируется. Логарифмический частотный критерий.

    реферат, добавлен 30.01.2011

  • Динамическая модель как теоретическая конструкция, описывающая изменение состояний объекта. Характеристика основных подходов к построению: оптимизационный, описательный. Рассмотрение способов построения математических моделей дискретных объектов.

    контрольная работа, добавлен 31.01.2013

  • Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.

    реферат, добавлен 12.08.2009

  • Свойства отражающей функции. Характеристика четной и нечетной вектор-функции, их отличительные черты. Семейства решений с постоянной четной частью. Примеры систем, решения которых имеют постоянную четную часть. Построение систем с заданной четной частью.

    дипломная работа, добавлен 22.09.2009

  • Методика проверки совместности системы уравнений и ее решение. Вычисление параметров однородной системы линейных алгебраических уравнений. Нахождение по координатам модуля, проекции вектора, скалярного произведения векторов. Составление уравнения прямой.

    контрольная работа, добавлен 23.01.2012

  • Расчет передаточной функции разомкнутой системы, передаточные функции замкнутой системы по заданию, по возмущению, по ошибке для одноконтурной АСР с дифференциальным уравнением объекта управления. Структурная схема объекта и расчет устойчивости системы.

    контрольная работа, добавлен 13.12.2010

  • Анализ эффективности простейших систем массового обслуживания, расчет их технических и экономических показателей. Сравнение эффективности системы с отказами с соответствующей смешанной системой. Преимущества перехода к системе со смешанными свойствами.

    курсовая работа, добавлен 25.02.2012

  • Моделирование как метод научного познания, его сущность и содержание, особенности использования при исследовании и проектировании сложных систем, классификация и типы моделей. Математические схемы моделирования систем. Основные соотношения моделей.

    курсовая работа, добавлен 15.10.2013

  • Решение системы уравнений по формулам Крамера и методом Гаусса. Нахождение объема пирамиды, площади грани, величины проекции вектора с помощью средств векторной алгебры. Пример определения и решения уравнения стороны, высоты и медианы треугольника.

    контрольная работа, добавлен 22.04.2014

  • Понятие верхнего центрального показателя системы, характеристические показатели Ляпунова. Семейство кусочно-непрерывных и равномерно ограниченных функций, способы их решения. Соотношения между старшим и верхним центральным показателями линейных систем.

    дипломная работа, добавлен 07.09.2009

  • Исследование свойств конечной разрешимой группы с заданными инвариантами подгруппы Шмидта. Основные свойства проекторов и инъекторов. Определение подгруппы группы, максимальной подгруппы группы, инъектора и биектора. Изложение теорем, следствий и лемм.

    курсовая работа, добавлен 22.09.2009

  • Определение параметров объекта регулирования и математическая модель данного процесса. Показатели качества регулирования и выбор закона. Расчет оптимальных значений параметров настройки регулятора. Расчет переходного процесса регулирования в системе.

    контрольная работа, добавлен 25.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.