Элементы теории графов
Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.
Подобные документы
История слова "алгоритм", понятие, свойства, виды. Алгоритм Евклида, решето Эратосфена; математические алгоритмы при действии с числами и решении уравнений. Требования к алгоритмам: формализация входных данных, память, дискретность, детерминированность.
реферат, добавлен 14.05.2015Сущность теории множеств и особенности ее практического применения. Операции над множествами и их главные закономерности. Порядок нахождения области определения функции, участков ее возрастания и убывания. Определение вероятности исследуемого действия.
контрольная работа, добавлен 02.12.2011- 103. Теория сравнений
Основное понятие теории положительных (натуральных) чисел. Развитие стенографии для операций арифметики. Символический язык для делимости. Свойства и алгебра сравнений. Возведение сравнений в степень. Повторное возведение в квадрат. Малая теорема Ферма.
презентация, добавлен 04.06.2014 Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.
реферат, добавлен 19.08.2015Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.
дипломная работа, добавлен 09.10.2011Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.
курсовая работа, добавлен 09.12.2008Основы теории многочленов от одной переменной. Определение и простейшие свойства многочленов Чебышева. Основные теоремы о многочленах Чебышева. Формальная производная многочлена. Рациональные корни нормированного многочлена с целыми коэффициентами.
курсовая работа, добавлен 04.07.2015- 108. Плоские кривые
Понятие и свойства плоских кривых, история их исследований. Способы образования и разновидности плоских кривых. Кривые, изучаемые в школьном курсе математики. Разработка плана факультативных занятий по математике по теме "Кривые" в профильной школе.
дипломная работа, добавлен 24.02.2010 Понятие, истоки, систематизация и развитие теории групп. Множество как совокупность объектов, рассматриваемых как единое целое. Нильпотентные группы - непустые множества, замкнутые относительно бинарной алгебраической операции, их свойства и признаки.
курсовая работа, добавлен 27.03.2011Примеры скалярных полей. Производная в точке в направлении орта. Операторы дифференцирования или Гамильтона. Напряженность электрического поля, поле скоростей в движущейся среде. Дивергенция и ротор. Символ Кронекера. Некоторые свойства оператора набла.
контрольная работа, добавлен 21.03.2014Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.
презентация, добавлен 12.12.2012Основные понятия теории полуколец. Определение полукольца. Примеры. Дистрибутивные решетки. Идеалы полуколец. Положительные и ограниченные полукольца. Определение и примеры положительных и ограниченных полуколец. Основные свойства полуколец.
дипломная работа, добавлен 14.06.2007Понятие матрицы, его источники и развитие в математической науке, основные элементы и их взаимодействие. Описание действий с матрицами: сложение, вычитание, умножение между собой и на число, транспортирование. Свойства транспортированных матриц.
контрольная работа, добавлен 02.06.2010Основные понятия и некоторые классические теоремы теории интерполяции. Определение общих свойств пространств Лоренца. Понятие нормы и спектрального радиуса неотрицательных матриц. Исследование интерполяционных признаков семейств конечномерных пространств.
курсовая работа, добавлен 12.01.2011Исследования Дж. Кардано и Н. Тарталья в области решения первичных задач теории вероятностей. Вклад Паскаля и Ферма в развитие теории вероятностей. Работа Х. Гюйгенса. Первые исследования по демографии. Формирование понятия геометрической вероятности.
курсовая работа, добавлен 24.11.2010Основные обозначения и понятия, относящиеся к множествам, операции над ними. Объединение, пересечение и разность двух множеств и непринадлежность к нему элемента. Первая и вторая теорема Вейерштрасса, Ферма и Ролля. Вычисление интеграла вероятности.
контрольная работа, добавлен 12.12.2010Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.
лекция, добавлен 25.03.2012Свойства действительных чисел, их роль в развитии математики. Анализ построения множества действительных чисел в историческом аспекте. Подходы к построению теории действительных чисел по Кантору, Вейерштрассу, Дедекинду. Их изучение в школьном курсе.
презентация, добавлен 09.10.2011Векторы и основные линейные операции над ними. Понятие о скалярной величине, сложение и вычитание. Векторное произведение: понятие, свойства, особенности определения. Пример вычисления двойного векторного произведения. Доказательство тождества Лагранжа.
контрольная работа, добавлен 26.11.2013Множеством именуется некоторая совокупность элементов, объединенных по какому-либо признаку. Над множествами определяют операции, во многом сходные с арифметическими. Операции над множествами интерпретируют геометрически с помощью диаграмм Эйлера-Венна.
реферат, добавлен 03.02.2009Понятие и специфика Аддитивной теории чисел, ее содержание и значение. Описание основных проблем Аддитивной теории чисел: Варинга, Гольдбаха, Титчмарша. Методы решения данных проблем: редукция к производящим функциям, исследование структуры множеств.
курсовая работа, добавлен 18.12.2010Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.
курсовая работа, добавлен 15.06.2011Основные свойства многочленов Чебышева - двух последовательностей ортогональных многочленов, их роль в теории приближений. Способы определения, явные формулы. Многочлен Чебышева на отрезке. Случай произвольного отрезка. Разработка программной реализации.
курсовая работа, добавлен 19.12.2012Строение конечных групп по заданным свойствам их обобщенно субнормальных подгрупп. Использование методов абстрактной теории групп и теории формаций конечных групп. Субнормальные и обобщенно субнормальные подгруппы и их свойства. Обобщение теоремы Хоукса.
дипломная работа, добавлен 20.12.2009Основные элементы теорий однородных и краевых задач Римана, Гильберта, Нетера. Использование различных способов регуляризации полных особых интегральных уравнений. Некоторые основные свойства особых союзных операторов. Уравнения Фредгольма и Пуанкаре.
курсовая работа, добавлен 17.02.2014