Автоматизированная система построения нейронной сети методом обратного распространения ошибки
Рассмотрение способов применения и основных понятий нейронных сетей. Проектирование функциональной структуры автоматизированной системы построения нейросети обратного распространения ошибки, ее классов и интерфейсов. Описание периода "бета тестирования".
Подобные документы
Обучение нейронных сетей как мощного метода моделирования, позволяющего воспроизводить сложные зависимости. Реализация алгоритма обратного распространения ошибки на примере аппроксимации функции. Анализ алгоритма обратного распространения ошибки.
реферат, добавлен 09.06.2014Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа, добавлен 29.09.2014Анализ нейронных сетей и выбор их разновидностей. Модель многослойного персептрона с обучением по методу обратного распространения ошибки. Проектирование библиотеки классов для реализации нейросети и тестовой программы, описание тестирующей программы.
курсовая работа, добавлен 19.06.2010Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа, добавлен 23.09.2013Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.
дипломная работа, добавлен 07.06.2012Разработка систем автоматического управления. Свойства нейронных сетей. Сравнительные оценки традиционных ЭВМ и нейрокомпьютеров. Формальная модель искусственного нейрона. Обучение нейроконтроллера при помощи алгоритма обратного распространения ошибки.
реферат, добавлен 05.12.2010Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа, добавлен 18.02.2017Модель и задачи искусственного нейрона. Проектирование двуслойной нейронной сети прямого распространения с обратным распространением ошибки, способной подбирать коэффициенты ПИД-регулятора, для управления движения робота. Комплект “LEGO Mindstorms NXT.
отчет по практике, добавлен 13.04.2015Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа, добавлен 22.06.2011Преимущества и недостатки нейронных сетей с радиальными базисными функциями (РБФ). Функции newrbe и newrb для построения РБФ общего вида и автоматической настройки весов и смещений. Пример построения нейронной сети с РБФ в математической среде Matlab.
лабораторная работа, добавлен 05.10.2010- 11. Нейронные сети
Искусственные нейронные сети как вид математических моделей, построенных по принципу организации и функционирования сетей нервных клеток мозга. Виды сетей: полносвязные, многослойные. Классификация и аппроксимация. Алгоритм обратного распространения.
реферат, добавлен 07.03.2009 - 12. Нейронные сети
Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.
презентация, добавлен 16.10.2013 Характеристика моделей обучения. Общие сведения о нейроне. Искусственные нейронные сети, персептрон. Проблема XOR и пути ее решения. Нейронные сети обратного распространения. Подготовка входных и выходных данных. Нейронные сети Хопфилда и Хэмминга.
контрольная работа, добавлен 28.01.2011Способы применения нейронных сетей для решения различных математических и логических задач. Принципы архитектуры их построения и цели работы программных комплексов. Основные достоинства и недостатки каждой из них. Пример рекуррентной сети Элмана.
курсовая работа, добавлен 26.02.2015Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа, добавлен 05.10.2010Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 17.09.2013Обзор существующих решений построения систем взаимодействия. Классическая архитектура клиент-сервер. Защита от копирования и распространения материалов тестирования. Задачи ИБ компьютерных систем тестирования и обзор современных способов их реализации.
курсовая работа, добавлен 26.04.2013Сущность обратного проектирования, принцип работы лазерных сканеров. Этапы обратного проектирования модели существующего объекта. Построение модели по фотографиям, обработка полигональной сетки и построение параметрических поверхностей в Geomagic Wrap.
курсовая работа, добавлен 19.11.2017Правовое применение детектора лжи. Алгоритм обратного распространения ошибки. Процент правильного определения результата. Корректировка параметров и поднятие процента правильного определения результатов. Направления развития нейросетевого детектора лжи.
презентация, добавлен 14.08.2013Обучение нейросимулятора определению видовой принадлежности грибов по их заданным внешним признакам с применением алгоритма обратного распространения ошибки. Зависимость погрешностей обучения и обобщения от числа нейронов внутреннего слоя персептрона.
презентация, добавлен 14.08.2013Cоздание и описание логической модели автоматизированной системы обработки информации. Проектирование структуры системы в виде диаграмм UML. Анализ программных средств разработки программного обеспечения и интерфейса. Осуществление тестирования программы.
дипломная работа, добавлен 25.01.2015Принципы построения автоматизированных обучающих систем, их классификация, обзор существующих вариантов. Описание социальной программы поддержки населения "Твой курс", проектирование информационной системы по обучению населения компьютерной грамотности.
курсовая работа, добавлен 12.09.2012Принцип построения и описание прибора. Назначение и область применения спектрометра космических излучений на алмазных детекторах. Аппроксимация степенным многочленом. Математическая модель нейронной сети. Описание интерфейса программного комплекса.
дипломная работа, добавлен 03.09.2017Принцип работы нейросетей и модели синтеза. Ключевые моменты проблемы распознавания речи. Система распознавания речи как самообучающаяся система. Описание системы: ввод звука, наложение первичных признаков на вход нейросети, модель и обучение нейросети.
курсовая работа, добавлен 19.10.2010Способы применения технологий нейронных сетей в системах обнаружения вторжений. Экспертные системы обнаружения сетевых атак. Искусственные сети, генетические алгоритмы. Преимущества и недостатки систем обнаружения вторжений на основе нейронных сетей.
контрольная работа, добавлен 30.11.2015