Методи розфарбування графів
Основні положення теорії графов. Алгоритм розфарбування графу методом неявного перебору. Задання графу матрицею суміжності. Особливості програмної реалізації на мові Turbo Pascal алгоритму оптимального розфарбування вершин завантаженого з файлу графа.
Подобные документы
Теорія графів та її використання у різних галузях. У фізиці: для побудови схем для розв’язання задач. У біології: для розв’язання задач з генетики. Спрощення розв’язання задач з електротехніки за допомогою графів. Математичні розваги і головоломки.
научная работа, добавлен 10.05.2009Численное решение уравнения методом Эйлера и Рунге-Кутта в Excel. Программа на языке Turbo Pascal. Блок-схема алгоритма. Метод Рунге-Кутта для дифференциального уравнения второго порядка. Модель типа "хищник-жертва" с учетом внутривидового взаимодействия.
курсовая работа, добавлен 01.03.2012Общая характеристика графов с нестандартными достижимостями, их применение. Особенности задания, представления и разработки алгоритмов решения задач на таких графах. Описание нового класса динамических графов, программной реализации полученных алгоритмов.
реферат, добавлен 22.11.2010Передумови виникнення та основні етапи розвитку теорії ймовірностей і математичної статистики. Сутність, розробка та цінність роботи Стьюдента. Основні принципи, що лежать в основі клінічних досліджень. Застосування статистичних методів в даній сфері.
контрольная работа, добавлен 27.11.2010- 55. Графы
Граф как совокупность объектов со связями между ними. Характеристики ориентированного и смешанного графов. Алгоритм поиска кратчайшего пути между вершинами, алгоритм дейкстры. Алгебраическое построение матрицы смежности, фундаментальных резервов и циклов.
методичка, добавлен 07.06.2009 Розгляд найбільш відомих скінченно-різнецевих методів рішення рівнянь руху з непереривною силою: чисельна ітерація рівнянь Ньютона; алгоритм Бімана і Шофілда; метод Рунге-Кутта; методи Адамса, Крилова, Чаплигіна. Програма Рунге-Кутта на мові С#.
курсовая работа, добавлен 27.01.2011Схема класифікації та методи розв'язування рівнянь. Метод половинного ділення. Алгоритм. Метод хорд, Ньютона, їх проблеми. Граф-схема алгоритму Ньютона. Метод простої ітерації. Питання збіжності методу простої ітерації. Теорема про стискаючі відображення.
презентация, добавлен 06.02.2014Остовное дерево связного неориентированного графа. Алгоритм создания остовного дерева, его нахождение. Сущность и главные особенности алгоритма Крускала. Порядок построения алгоритма Прима, вершина наименьшего веса. Промежуточная структура данных.
презентация, добавлен 16.09.2013- 59. Метод хорд
Контрольный пример к алгоритму метода хорд. Вычисление и уточнение корня методом хорд и касательных. Нахождение второй производной заданной функции. Уточненное значение корня решаемого уравнения на заданном интервале. Код программы данного примера.
лабораторная работа, добавлен 02.12.2014 Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.
реферат, добавлен 13.06.2011Алгоритм перехода к каноническому виду стандартной формы ЗЛП. Симплексные преобразования при изменении базисных переменных. Графический способ упорядочения вершин. Расчет параметров сетевого графика. Устойчивость решений ЗЛП при изменении параметров.
учебное пособие, добавлен 14.07.2011Означення теорії множин. Дії над множинами. Алгебра множин. Вектори і прямий добуток множин. Властивості відношень. Способи задання функції. Сукупність підстановок множини. Алгебраїчні операції та системи. Властивості рефлексивності та симетричності.
конспект урока, добавлен 28.06.2012Основні напрямки теорії ймовірностей. Сутність понять "подія", "ймовірність події". Перестановки, розміщення та сполучення. Безпосередній підрахунок ймовірностей. Основні теореми додавання та множення ймовірностей. Формула повної ймовірності та Байєса.
контрольная работа, добавлен 27.03.2011Загальні відомості про комплексну площину, визначення інверсії. Формула інверсії в комплексно сполучених координатах. Нерухливі крапки, образи прямих і окружностей при узагальненій інверсії. Застосування інверсії при рішенні задач і доказі теорем.
дипломная работа, добавлен 14.02.2011Примеры решения задач по заданию графов. Определение основных характеристик графа: диаметра, радиуса, эксцентриситета каждой вершины. Вычисление вершинного и реберного хроматического числа. Упорядоченность матричным способом и построение функции.
контрольная работа, добавлен 05.07.2014Основополагающие понятия теории графов. Определение эквивалентности, порождаемое группой подстановок, и доказательство леммы Бернсайда о числе ее классов. Понятие перечня конфигурации и доказательство теоремы Пойа. Решение задачи о перечислении графов.
курсовая работа, добавлен 18.01.2014- 67. Теория графов
Нахождение минимального пути от фиксированной до произвольной вершины графа с помощью алгоритма Дейкстры, рассмотрение основных принципов его работы. Описание блок-схемы алгоритма решения задачи. Проверка правильности работы разработанной программы.
курсовая работа, добавлен 19.09.2011 Задачи нахождения собственных значений и соответствующих им собственных векторов. Математическое обоснование метода итераций. Алгоритм метода Леверрье-Фаддеева, численное решение оценки собственных значений матриц. Листинг программы на языке "Pascal".
курсовая работа, добавлен 05.11.2014Свойства операций над множествами. Формулы алгебры высказываний. Функции алгебры логики. Существенные и фиктивные переменные. Проверка правильности рассуждений. Алгебра высказываний и релейно-контактные схемы. Способы задания графа. Матрицы для графов.
учебное пособие, добавлен 27.10.2013- 70. Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень
Використання методу Монтгомері як ефективний шлях багаторазового зведення за модулем. Складність операцій з многочленами та обчислення їх значень. Алгоритм Руфіні-Горнера. Визначення рекурсивного процесу для множення. Доведення алгоритму Тоома-Кука.
контрольная работа, добавлен 07.02.2011 Загальні положення та визначення в теорії моделювання. Поняття і класифікація моделей, iмовірнісне моделювання. Статистичне моделювання, основні характеристики випадкових векторів. Описання програмного забезпечення для моделювання випадкових векторів.
дипломная работа, добавлен 25.08.2010Нахождение экстремумов функций методом множителей Лагранжа. Выражение расширенной целевой функции. Схема алгоритма численного решения задачи методом штрафных функций в сочетании с методом безусловной минимизации. Построение линий ограничений.
курсовая работа, добавлен 04.05.2011Скалярне множення або експоненціювання точки кривої у криптографічних алгоритмах. Методи вікон з алгоритмом подвоєння – додавання – віднімання. Метод еспоненціювання Монтгомері. Методи експоненціювання при фіксованій точці. Алгоритм максимальної пам'яті.
контрольная работа, добавлен 07.02.2011- 74. Связность графов
Рассмотрение понятия и видов графов как совокупности непустого конечного множества элементов; условия их связанности. Доказательства существования замкнутых Эйлеровой, Гамильнотовой и бесконечной цепей. Ознакомление с элементарными свойствами деревьев.
курсовая работа, добавлен 10.02.2012 Застосування конгруенцій: ознаки подільності, перевірка арифметичних дій, перетворення десяткового дробу у звичайний та навпаки, індекси. Вчені, що займалися питанням застосування конгруенцій. Основні теореми в теорії конгруенцій - Ейлера і Ферма.
курсовая работа, добавлен 04.06.2011