Изучение теоремы Безу для решения уравнений n-й степени при n>2
Уравнения третьей степени и выше. Разложение левой части уравнения на множители, если правая часть равна нулю. Теорема Безу как один из методов, которые помогают решать уравнения высоких степеней. Определение и доказательство теоремы и следствия из нее.
Подобные документы
Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле, ее доказательство в виде произведения L-функций в разветвленном и неразветвленном случаях. Приложение теоремы: выведение функционального уравнения дзета-функции Дедекинда.
курсовая работа, добавлен 15.06.2011Понятие и характерные признаки равносильных уравнений, требования к множеству их решений. Теорема о равносильности уравнений и порядок ее доказательства, значение в современной математике. Порядок и основные этапы нахождения корней уравнения-следствия.
презентация, добавлен 17.03.2011Идея элементарного доказательства великой теоремы Ферма исключительно проста: разложение чисел a, b, c на пары слагаемых, группировка из них двух сумм U' и U'' и умножение равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 1
статья, добавлен 07.07.2005Типы уравнений, допускающих понижение порядка. Линейное дифференциальное уравнение высшего порядка. Теоремы о свойствах частичных решений. Определитель Вронского и его применение. Использование формулы Эйлера. Нахождение корней алгебраического уравнения.
презентация, добавлен 29.03.2016Теорема Ферма: содержание, доказательство, геометрический смысл. Теорема Ролля: производная функции, отсутствие непрерывности Отсутствует и дифференцируемости. Доказательство теоремы Лагранжа, общий вид, геометрический смысл, содержание следствия.
презентация, добавлен 21.09.2013- 31. Теорема Пифагора
Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.
презентация, добавлен 05.12.2010 Системы уравнений. Запись в виде системы. Линейное уравнение с двумя переменными. Квадратные уравнения второй степени. Упрощенное уравнение третей степени. Переменная в четвертой степени. Множество корней (решений). Способ подстановки. Способ сложения.
реферат, добавлен 02.06.2008Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.
творческая работа, добавлен 25.06.2009Выведение формулы решения квадратного уравнения в истории математики. Сравнительный анализ технологий различных способов решения уравнений второй степени, примеры их применения. Краткая теория решения квадратных уравнений, составление задачника.
реферат, добавлен 18.12.2012Особенности выражения производной неизвестной функции. Общий вид дифференциального уравнения первого порядка, его решение. Сущность теоремы Коши (о существовании и единственности решения), её геометрический смысл. Общее и частное решение уравнения.
презентация, добавлен 17.09.2013История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.
контрольная работа, добавлен 27.11.2010Подход к решению уравнений. Формулы разности степеней. Понижение формы члена уравнения. Компьютерный поиск данных чисел. Система Диофантовых уравнений. Значения натурального ряда. Уравнения с нечётным числом членов решений в натуральных числах.
доклад, добавлен 26.04.2009История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.
презентация, добавлен 21.10.2011Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа, добавлен 07.09.2010- 40. Гипотеза Биля
Доказательство гипотезы Биля методами элементарной алгебры: сочетание методов решения параметрических уравнений и замены переменных (теорема Ферма). Ее формулировка в виде неопределенного уравнения, которое не имеет решения в целых положительных числах.
творческая работа, добавлен 29.05.2009 - 41. Теорема Пифагора
Краткий биографический очерк жизненного пути Пифагора. История появления теоремы Пифагора, ее дальнейшее распространение в мире. Формулировка и доказательство теоремы с помощью различных методов. Возможности применения теоремы Пифагора к вычислениям.
презентация, добавлен 17.11.2011 Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа, добавлен 26.01.2015Изучение полиномиальных уравнений и путей их решений. Доказательство теорем Безу и Штурма. Ознакомление с правилами использования формул Виета, математических методов Лобачевского, касательных и пропорциональных отрезков для определения корней многочлена.
курсовая работа, добавлен 19.09.2011Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция, добавлен 18.08.2012Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.
дипломная работа, добавлен 06.05.2010Решение биквадратных, симметричных и кубических уравнений, содержащих радикалы. Решение уравнений четвертой степени методом понижения степени и разложения на множители. Применение бинома Ньютона. Графический метод решения уравнений повышенной степени.
презентация, добавлен 29.05.2010Культ античной Греции. Вопросы элементарной геометрии. Книга Диофанта "Арифметика". Решение неопределенных уравнений, диофантовых уравнений высоких степеней. Составление системы уравнений. Нахождение корней квадратного уравнения, метод Крамера.
реферат, добавлен 18.01.2011Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.
лекция, добавлен 24.11.2010Основные понятия и результаты, связанные с теорией диофантовых уравнений, теорией эллиптических кривых и abc-гипотезой. Метод бесконечного спуска и доказательство теоремы Ферма для n=4. Анализ выводов К. Рибета Великой теоремы Ферма из гипотезы Таниямы.
дипломная работа, добавлен 26.05.2012- 50. Теорема Лагранжа
Применение теоремы Лагранжа при решении задач. Ее использование при решении неравенств и уравнений, при нахождении числа корней некоторого уравнения. Решение задач с использованием условия монотонности. Связи между возрастанием или убыванием функции.
реферат, добавлен 14.03.2013