Різницевий метод розв'язання крайових задач для звичайних диференціальних рівнянь

Розгляд крайової задачі для нелінійного рівняння другого порядку. Вивчення різницевого методу розв'язання крайових задач для звичайних диференціальних рівнянь. Метод прогонки - окремий випадок методу Гауса. Програма на алгоритмічній мові Turbo Pascal.

Подобные документы

  • Знаходження коефіцієнтів для рівнянь нелінійного виду та аналіз рівняння регресії. Визначення параметрів емпіричної формули. Метод найменших квадратів. Параболічна інтерполяція, метод Лагранжа. Лінійна кореляція між випадковими фізичними величинами.

    курсовая работа, добавлен 25.04.2014

  • Власні числа і побудова фундаментальної системи рішень. Однорідна лінійна система диференціальних рівнянь. Побудова фундаментальної матриці рішень методом Ейлера. Знаходження наближеного рішення у вигляді матричного ряду. Рішення неоднорідної системи.

    курсовая работа, добавлен 26.12.2010

  • Ознайомлення з нестандартними методами рішення рівнянь і нерівностей. Відомості з історії математики про рішення рівнянь. Розгляд та застосування на практиці методів рішення рівнянь і нерівностей, заснованих на використанні властивостей функції.

    дипломная работа, добавлен 26.01.2011

  • Процес розповсюдження тепла в стержні методом розділення змiнних. Застосування методу Фур’є розділення змінних для розв’язання поставленої нестацiонарної задачі теплопровiдностi. Теорема про нагрітий стержень з нульовими температурами в кінцевих точках.

    курсовая работа, добавлен 10.04.2016

  • Стандартні ірраціональні рівняння й методи їхнього рішення. Застосування основних властивостей функції: області визначення рівняння, значень, монотонності та обмеженості функції. Застосування похідної. Методи рішення змішаних ірраціональних рівнянь.

    курсовая работа, добавлен 14.01.2011

  • Методика викладання теми, що стосується графічних методів розв’язування задач з параметрами. Обережне відношення до фіксованого, але невідомого числа при роботі з параметром. Побудова графічного образу на координатній площині, застосування похідної.

    дипломная работа, добавлен 20.08.2010

  • Визначення метричного простору. Границя функції у точці. Властивості границь дійсних функцій. Властивості компактних множин. Розв’язок системи лiнiйних рівнянь. Теорема про існування i єдність розв’язку диференціального рівняння. Нумерація формул.

    методичка, добавлен 25.04.2014

  • Поняття та методика визначення геометричного місця точки на площині. Правила та головні етапи процесу застосування даного математичного параметру до розв’язання задач на побудову. Вивчення прикладів задач на відшукання геометричного місця точки.

    курсовая работа, добавлен 12.06.2011

  • Вивчення теорії інтегральних нерівностей типу Біхарі для неперервних і розривних функцій та її застосування. Розгляд леми Гронуолла–Беллмана–Бiхарi для нелiнiйних iнтегро-сумарних нерiвностей. Критерій стійкості автономної системи диференціальних рівнянь.

    курсовая работа, добавлен 21.04.2015

  • Максимуми і мінімуми в природі (оптика). Завдання на оптимізацію. Варіаційні методи розв’язання екстремальних задач. Найбільш відомі екстремальні задачі в геометрії: задача Дідони, Евкліда, Архімеда, Фаньяно, Ферма-Торрічеллі-Штейнера та Штейнера.

    курсовая работа, добавлен 12.09.2014

  • Функціональні методи рішення тригонометричних і комбінованих рівнянь. Рішення тригонометричних нерівностей графічним методом. Відомість тригонометричних рівнянь до алгебраїчних. Перетворення й об'єднання груп загальних рішень тригонометричних рівнянь.

    дипломная работа, добавлен 25.02.2011

  • Суть принципу Діріхле та найпростіші задачі, пов’язані з ним. Використання методів розв’язування математичних задач олімпіадного характеру при вивченні окремих тем шкільного курсу математики та на факультативних заняттях. Індукція в геометричних задачах.

    дипломная работа, добавлен 15.03.2013

  • Вивчення теоретичних положень про симетричні многочлени і їх властивості: загальне поняття і характеристика властивостей. Математичне вживання симетричних многочленів: розв'язування систем рівнянь, доведення тотожності, звільнення від ірраціональності.

    курсовая работа, добавлен 04.04.2011

  • Поняття математичної та арифметичної задачі, ступені у навчанні розв’язування. Аналіз системи математичних задач, які вивчаються в початкових класах. Математична задача як засіб активізації учіння. Індивідуальний підхід до дитини і диференціація завдань.

    курсовая работа, добавлен 25.12.2014

  • Аксіоматика і основні метричні формули псевдоевклідової площини. Канонічні рівняння кривих другого порядку (параболи, еліпса, гіперболи). Елементи загальної теорії кривих другого порядку псевдоевклідової площини. Перетворення координат рівняння.

    презентация, добавлен 17.01.2015

  • Аналіз рівняння еліпсоїда, властивостей кривих і поверхонь другого порядку. Канонічне рівняння гіперболи за допомогою перетворень паралельного переносу й повороту координатних осей. Дослідження форми поверхні другого порядку методом перетину площинами.

    курсовая работа, добавлен 27.12.2010

  • Розгляд нових методів екстримізації однієї змінної. Типи задач, які існують для розв’язування задач мінімізації на множині Х. Золотий поділ відрізка на дві неоднакові частини, дослідження його на стійкість. Алгоритм, текст програми, результат роботи.

    курсовая работа, добавлен 01.04.2011

  • Вивчення рівняння з однією невідомою довільного степеня та способів знаходження коренів таких рівнянь. Доведення основної теореми алгебри. Огляд способу Ньютона встановлення меж дійсних коренів алгебраїчних рівнянь. Відокремлення коренів методом Штурма.

    курсовая работа, добавлен 06.10.2012

  • Вивчення існування періодичних рішень диференціальних систем і рівнянь за допомогою властивостей симетричності (парність, непарність). Основні теорії вектор-функцій, що відбивають. Побудова множини систем, парна частина загального рішення яких постійна.

    курсовая работа, добавлен 20.01.2011

  • Розгляд властивостей абсолютних величин і теорем про рівносильні перетворення рівнянь і нерівностей, що містять знак модуля. Формулювання маловідомих тверджень, що істотно спрощують традиційні алгоритмічні способи рішення шкільних, конкурсних задач.

    дипломная работа, добавлен 15.02.2011

  • Теорема Куна-Такера. Побудування функції Лагранжа. Задача квадратичного програмування. Узагальнення симплексного метода лінійного програмування згідно методу Біла. Правила переходу від однієї таблиці до іншої. Система обмежень у допустимої області.

    курсовая работа, добавлен 08.05.2014

  • Характеристика та поняття потрійного інтеграла, умови його існування та основні властивості. Особливості схеми побудови та обчислення потрійного інтегралу, його застосування для розв’язання рівнянь. Правило заміни змінних в потрійному інтегралі.

    контрольная работа, добавлен 23.03.2011

  • Методи зведення до канонічної форми задач лінійного програмування. Визначення шляхів знаходження екстремумів функцій графічним способом. Побудова початкового опорного плану методом "північно-західного" напрямку. Складання двоїстої системи матриць.

    контрольная работа, добавлен 08.02.2010

  • Розгляд програми вивчення паралельності прямих у просторі. Аналіз викладення теми конструювання геометричних тіл та дослідження їхніх властивостей у шкільних підручниках геометрії. Методика навчання учнів теоретичного матеріалу та розв’язування завдань.

    курсовая работа, добавлен 26.03.2014

  • Лінійні різницеві рівняння зі сталими коефіцієнтами. Теоретичне дослідження основних теорій інваріантних тороїдальних многовидів для зліченних систем лінійних і нелінійних різницевих рівнянь, що визначені на скінченновимірних та нескінченновимірних торах.

    курсовая работа, добавлен 18.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.