Построение классификатора морских подводных целей
Проблема гидроакустической классификации целей как актуальная проблема современной гидроакустики. Применение нейросетевых алгоритмов и отдельных парадигм для решения научно-технических задач. Выбор структуры нейронной сети для распознавания изображений.
Подобные документы
Разработка методики оценки кредитоспособности индивидуальных предпринимателей с использованием нейросетевых технологий. Оптимизация и упрощение нейронной сети. Экономическая эффективность инвестиций в разработанную интеллектуальную информационную систему.
дипломная работа, добавлен 29.06.2012Компиляторы - инструменты для решения вычислительных задач с использованием бинарного кода. Проблема выбора "правильного" компилятора. Применение компиляторов языка С++. Оценка MinGW, Borland Builder, Intel C++ Professional Edition, Watcom и Visual Studi.
контрольная работа, добавлен 05.10.2012Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа, добавлен 05.10.2010Обработка изображений на современных вычислительных устройствах. Устройство и представление различных форматов изображений. Исследование алгоритмов обработки изображений на базе различных архитектур. Сжатие изображений на основе сверточных нейросетей.
дипломная работа, добавлен 03.06.2022Изучение и реализация системы, использующей возможности Microsoft Azure для распределенного обучения нейронной сети. Рассмотрение функционирования распределенных вычислений. Выбор задачи для исследования; тестирование данного программного ресурса.
дипломная работа, добавлен 20.07.2015Обзор математических методов распознавания. Общая архитектура программы преобразования автомобильного номерного знака. Детальное описание алгоритмов: бинаризация изображения, удаление обрамления, сегментация символов и распознавание шаблонным методом.
курсовая работа, добавлен 22.06.2011Использование информационных технологий для решения транспортных задач. Составление программ и решение задачи средствами Pascal10; алгоритм решения. Работа со средствами пакета Microsoft Excel18 и MathCad. Таблица исходных данных, построение диаграммы.
курсовая работа, добавлен 13.08.2012Типы изображений (черно-белые, полутоновые, цветные) и их форматы. Устройства, создающие цифровые изображения, и их параметры. Применение и характеристики методов сжатия изображений. Поиск по содержимому в базах данных изображений. Структуры баз данных.
презентация, добавлен 11.10.2013Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа, добавлен 23.09.2013Разработка программы для решения инженерных задач с использованием функций, процедур и сложных типов данных, в том числе динамических массивов и объединений. Интерфейс ввода/вывода. Схемы алгоритмов отдельных подзадач. Технические требования к программе.
курсовая работа, добавлен 26.11.2012Нейронные сети и оценка возможности их применения к распознаванию подвижных объектов. Обучение нейронной сети распознаванию вращающегося трехмерного объекта. Задача управления огнем самолета по самолету. Оценка экономической эффективности программы.
дипломная работа, добавлен 07.02.2013Определение понятия алгоритмов, принципы их решения людьми и всевозможными техническими устройствами. Применение компьютера для решения задач. Особенности использования метода последовательного укрупнения при создании шахматной доски по алгоритму.
презентация, добавлен 06.02.2012Обзор задач, возникающих при разработке систем распознавания образов. Обучаемые классификаторы образов. Алгоритм персептрона и его модификации. Создание программы, предназначенной для классификации образов методом наименьшей среднеквадратической ошибки.
курсовая работа, добавлен 05.04.2015Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа, добавлен 18.02.2017- 40. Модель порта
Формализация задач и целей моделирования. Разработка имитационной модели навигации в морском порту. Определение границ модели и характера переменных. Выбор имитаторов основных функций объекта и внешней среды. Составление структуры моделирующего алгоритма.
курсовая работа, добавлен 14.11.2011 История появления эволюционных алгоритмов. Нейрокомпьютерные исследования в России. Реализация генетических алгоритмов. Расчет эффективности процедур поиска конкурирующей процедуры. Schema и теорема шим. Примеры использования нейросетевых технологий.
курсовая работа, добавлен 20.10.2008Осуществление постановки и выбор алгоритмов решения задач обработки экономической информации; разработка программы для работы с базой данных о маршруте: начало, конец, номер, суммарное количество мест. Поиск маршрутов по названиям конечного пункта.
курсовая работа, добавлен 17.01.2013Нейрокомпьютер как система. История его создания и совершенствования, разновидности и назначение нейрочипов. Методика разработки алгоритмов и схем аналоговых нейрокомпьютеров для выполнения разных задач обработки изображений, порядок их моделирования.
дипломная работа, добавлен 04.06.2009Обзор существующих подходов в генерации музыкальных произведений. Особенности создания стилизованных аудио произведений на основе современных нейросетевых алгоритмов. Выбор средств и библиотек разработки. Практические результаты работы алгоритма.
дипломная работа, добавлен 13.10.2017Программная реализация статической нейронной сети Хемминга, распознающей символы текста. Описание реализации алгоритма. Реализация и обучение сети, входные символы. Локализация и масштабирование изображения, его искажение. Алгоритм распознавания текста.
контрольная работа, добавлен 29.06.2010Цель ТРИЗ - области знаний о механизмах развития технических систем и методах решения изобретательских задач. Значение точной формулировки мини-задачи. Три вида противоречий в порядке возрастания сложности разрешения. Законы развития технических систем.
презентация, добавлен 18.03.2017Применение технических средств компьютера для решения широкого круга задач. Программы для обработки табличных данных. Пользовательский интерфейс и расширение базовых возможностей Ехсеl: формулы и функции, гиперссылки, построение диаграмм и графиков.
контрольная работа, добавлен 31.08.2010Модель и задачи искусственного нейрона. Проектирование двуслойной нейронной сети прямого распространения с обратным распространением ошибки, способной подбирать коэффициенты ПИД-регулятора, для управления движения робота. Комплект “LEGO Mindstorms NXT.
отчет по практике, добавлен 13.04.2015Применение различных методов компрессии изображений и анимации. Определение наиболее подходящего формата сжатия. Выбор кодеков при помощи программы RIOT. Применение дополнительных способов оптимизации с использование программ OptiPNG, PNGOUT и TweakPNG.
лабораторная работа, добавлен 31.05.2013Анализ существующих алгоритмов распознавания режимов работы газотурбинного двигателя. Метод группового учета аргументов, метод Байеса. Применение технологий системного моделирования на этапе проектирования интеллектуальной системы распознавания режимов.
курсовая работа, добавлен 11.04.2012