Итерационные методы решения систем линейных алгебраических уравнений
Сущность итерационного метода решения задачи, оценка его главных преимуществ и недостатков. Разновидности итерационных методов решения систем линейных алгебраических уравнений: Якоби, Хорецкого и верхней релаксации, их отличия и возможности применения.
Подобные документы
Преподавательская работа швейцарского математика Габриэля Крамера, введение в анализ алгебраических кривых. Система произвольного количества линейных уравнений с квадратной матрицей Крамера. Классификация и порядок математических и алгебраических кривых.
реферат, добавлен 17.05.2011Теоретические основы решения уравнений, содержащих параметр. Анализ школьных учебников по алгебре и началам анализа. Основные виды уравнений, содержащих параметр. Основные методы решения уравнений, содержащих параметр.
дипломная работа, добавлен 08.08.2007Изучение формул Крамера и Гаусса для решения систем уравнений. Использование метода обратной матрицы. Составление уравнения медианы и высоты треугольника. Нахождение пределов выражений и производных заданных функций. Определение экстремумов функции.
контрольная работа, добавлен 15.01.2014Предикатное представление условий непересечения многоугольников. Алгоритм непересечения многоугольника и полосы. Определение направления обхода вершин многоугольника. Решение систем линейных алгебраических уравнений. Построение интерактивной оболочки.
дипломная работа, добавлен 10.11.2012Теория определителей в трудах П. Лапласа, О. Коши и К. Якоби. Определители второго порядка и системы двух линейных уравнений с двумя неизвестными. Определители третьего порядка и свойства определителей. Решение системы уравнений по правилу Крамера.
презентация, добавлен 31.10.2016Определение алгебраического дополнения элемента определителя, матрицы, ее размера и видов. Неоднородная система линейных алгебраических уравнений. Решение системы уравнений методом Крамера. Скалярные и векторные величины, их примеры, разложение вектора.
контрольная работа, добавлен 19.06.2009Основные понятия и определения кубических уравнений, способы их решения. Формула Кардано и тригонометрическая формула Виета, сущность метода перебора. Применение формулы сокращенного умножения разности кубов. Определение корня квадратного трехчлена.
курсовая работа, добавлен 21.10.2013Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.
реферат, добавлен 12.08.2009Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа, добавлен 09.02.2012Суть модифицированного метода Эйлера. Определение интерполяционного многочлена. Выведение формулы трапеций из геометрических соображений. Применение для расчетов интерполированного полинома Ньютона. Составление блок-схемы алгоритма решения уравнений.
курсовая работа, добавлен 14.02.2016Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.
реферат, добавлен 24.08.2015Решение системы линейных уравнений методом Якоби вручную и на Бейсике. Построение интерполяционного многочлена Ньютона с помощью Excel. Получение аппроксимирующей функции методом наименьших квадратов. Построение кубического сплайна по шести точкам.
курсовая работа, добавлен 07.09.2012- 113. Изучение матриц
Назначение и определение алгебраического дополнения элемента определителя. Особенности неоднородной системы линейных алгебраических уравнений. Определение размера матрицы. Решение системы уравнений методом Крамера. Скалярные и векторные величины.
контрольная работа, добавлен 13.07.2009 Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.
курсовая работа, добавлен 29.04.2013- 115. Приближенные методы решения краевых задач, для дифференциальных уравнений с частными производными
Использование метода конечных разностей для решения краевой задачи уравнений с частными производными эллиптического типа. Графическое определение распространения тепла методом конечно-разностных аппроксимаций производных с применением пакета Mathlab.
курсовая работа, добавлен 06.07.2011 Определение системы с двумя переменными, способ ее решения. Специфика преобразования линейных уравнений с двумя переменными. Способ сложения и замены переменных в этом виде уравнений, примеры их графиков. Алгоритм нахождения количества системы уравнений.
презентация, добавлен 08.12.2011Математические и педагогические основы исследования системы линейных уравнений. Компьютерная математика Mathcad. Конспекты уроков элективного курса "Изучение избранных вопросов по математике с использованием системы компьютерной математики Mathcad".
дипломная работа, добавлен 03.05.2013Структура и принципы решения линейных уравнений. Метод Крамера и Гаусса, Ньютона, половинного деления, секущих. Отличительные особенности и условия применения графического метода. Содержание теоремы Штурма. Принципы и основные этапы поиска интервалов.
реферат, добавлен 30.03.2019Определение понятия уравнения с параметрами. Принцип решения данных уравнений при общих случаях. Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями. Девять примеров решения уравнений.
реферат, добавлен 09.02.2009Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
контрольная работа, добавлен 24.10.2010Исследование сущности и сфер применения метода итераций. Нелинейные уравнения. Разработка вычислительный алгоритм метода итераций. Геометрический смысл. Составление программы решения систем нелинейных уравнений методом итераций в среде Turbo Pascal.
реферат, добавлен 11.04.2014Понятие и отличительные особенности численных методов решения, условия и возможности их применения. Оптимизация функции одной переменной, используемые методы и закономерности их комбинации, сравнение эффективности. Сущность и разновидности интерполяции.
реферат, добавлен 29.06.2015Сущность и графическое представление методов решения нелинейных уравнений вида F(x)=0. Особенности метода хорд, бисекции, простой итерации, касательных и секущих. Проверка результатов с помощью встроенных функций и оценка точности полученных значений.
контрольная работа, добавлен 09.11.2010Составление уравнения Эйлера, нахождение его общего решения. Нахождение с использованием уравнения Эйлера-Лагранжа оптимального управления, минимизирующего функционал для системы. Использование метода динамического программирования для решения уравнений.
контрольная работа, добавлен 01.04.2010Векторная запись нелинейных систем. Метод Ньютона, его сущность, реализации и модификации. Метод Ньютона с последовательной аппроксимацией матриц. Обобщение полюсного метода Ньютона на многомерный случай. Пример реализации метода Ньютона в среде MATLAB.
реферат, добавлен 27.03.2012