Метод хорд
Приближенные решения кубических уравнений. Работы Диофанта, Ферма и Ньютона. Интерационный метод нахождения корня уравнения. Геометрическое и алгебраическое описания метода хорд. Погрешность приближенного решения. Линейная скорость сходимости метода.
Подобные документы
Решение уравнения гармонического осциллятора при помощи разложения в ряд Тейлора. Применение метода индуцированной алгебры. Решение уравнения гармонического осциллятора при помощи метода индуцированной алгебры. Сравнение работоспособности методов решений.
курсовая работа, добавлен 24.05.2012Линейные уравнения с параметрами. Методы и способы решения систем с неизвестным параметром (подстановка, метод сложения уравнений и графический). Выявление алгоритма действий. Поиск значения параметров, при которых выражение определяет корень уравнения.
контрольная работа, добавлен 17.02.2014Проблема решения уравнений в целых числах: от Диофанта до доказательства теоремы Ферма. Сущность теоремы о делимости данного числа на произведение двух взаимно простых чисел, особенности ее применения к решению неопределенных уравнений в целых числах.
курсовая работа, добавлен 10.03.2014Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.
лабораторная работа, добавлен 26.04.2014Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ, практическое применение. Пример использования данного метода ветвей для решения задачи коммивояжера.
контрольная работа, добавлен 07.06.2011Построение таблицы и графика решения линейного дифференциального уравнения. Зависимость погрешности решения от выбора шага интегрирования. Метод Адамса-Башфорта и его применение. Основные функции и переменные, использованные в реализованной программе.
контрольная работа, добавлен 13.06.2012- 107. Линейная алгебра
Ознакомление с основами метода Гаусса при решении систем линейных уравнений. Определение понятия ранга матрицы. Исследование систем линейных уравнений; особенности однородных систем. Рассмотрение примера решения данной задачи в матрической форме.
презентация, добавлен 14.11.2014 Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
статья, добавлен 29.08.2004Исследование зависимости погрешности решения от погрешностей правой части системы. Определение корня уравнения с заданной точностью. Вычисление точностных оценок методов по координатам. Сплайн интерполяция и решение дифференциального уравнения.
контрольная работа, добавлен 26.04.2011Сущность итерационного метода решения задачи, оценка его главных преимуществ и недостатков. Разновидности итерационных методов решения систем линейных алгебраических уравнений: Якоби, Хорецкого и верхней релаксации, их отличия и возможности применения.
курсовая работа, добавлен 01.12.2009Понятия теории графов, их связность и задача о кратчайшей цепи. Программная реализация метода Дейкстры, его сравнение с методом простого перебора. Описание логики программного модуля. Примеры работы программы нахождения кратчайшей цепи в связном графе.
курсовая работа, добавлен 25.11.2011Общая постановка задачи решения обыкновенных дифференциальных уравнений, особенности использования метода Адамса в данном процессе. Решение системы обыкновенных дифференциальных уравнений методом Адамса и точным методом, сравнение полученных результатов.
курсовая работа, добавлен 27.04.2011Изучение формул Крамера и Гаусса для решения систем уравнений. Использование метода обратной матрицы. Составление уравнения медианы и высоты треугольника. Нахождение пределов выражений и производных заданных функций. Определение экстремумов функции.
контрольная работа, добавлен 15.01.2014Метод последовательного исключения неизвестных (метод Гаусса) при решении задач аппроксимации функции в прикладной математике. Метод Гаусса с выбором главного элемента и оценка погрешности при решении системы линейных уравнений, итерационные методы.
контрольная работа, добавлен 04.09.2010Систематизация сведений о линейных и квадратичных зависимостях и связанных с ними уравнениях и неравенствах. Выделение полного квадрата, как метод решения некоторых нестандартных задач. Свойства функции |х|. Уравнения и неравенства, содержащие модули.
дипломная работа, добавлен 25.06.2010Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.
курсовая работа, добавлен 29.11.2014Изучение основ линейных алгебраических уравнений. Нахождение решения систем данных уравнений методом Гаусса с выбором ведущего элемента в строке, в столбце и в матрице. Выведение исходной матрицы. Основные правила применения метода факторизации.
лабораторная работа, добавлен 28.10.2014Решение системы линейных алгебраических уравнений большой размерности с разреженными матрицами методом простого итерационного процесса. Понятие нормы матрицы и вектора. Критерии прекращения итерационного процесса. Выбор эффективного итерационного метода.
лабораторная работа, добавлен 06.07.2009Элементарные тригонометрические уравнения и методы их решения. Введение вспомогательного аргумента. Схема решения тригонометрических уравнений. Преобразование и объединение групп общих решений тригонометрических уравнений. Разложение на множители.
курсовая работа, добавлен 21.12.2009Основные этапы и принципы решения системы линейных уравнений с помощью метода Крамара, обратной матрицы. Разрешение матричного уравнения. Вычисление определителя. Расчет параметров пирамиды: длины ребра, площади грани, объема, а также уравнения грани.
контрольная работа, добавлен 06.09.2015- 121. Интерполяционный многочлен Лагранжа. Интерполяционная формула Ньютона с разделёнными разностями
Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.
лабораторная работа, добавлен 16.11.2015 - 122. Решение неравенств
Сущность метода системосовокупностей как одного из распространенных и универсальных методов решения неравенств любого типа. Обобщение метода интервалов на тригонометрической окружности. Эффективность и наглядность графического метода решения задач.
методичка, добавлен 14.03.2011 Характеристика и использование итерационных методов для решения систем алгебраических уравнений, способы формирования уравнений. Методы последовательных приближений, Гаусса-Зейделя, обращения и триангуляции матрицы, Халецкого, квадратного корня.
реферат, добавлен 15.08.2009Определение понятия уравнения с параметрами. Принцип решения данных уравнений при общих случаях. Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями. Девять примеров решения уравнений.
реферат, добавлен 09.02.2009Модельная задача уравнения колебаний струны и деформации системы из трех струн. Вариационные методы решения: экстремум функционала, пробные функции, метод Ритца. Подпространства сплайнов и тестирование программы решения системы алгебраических уравнений.
дипломная работа, добавлен 29.06.2012