Точные методы численного решения систем линейных алгебраических уравнений
Метод главных элементов, расширенная матрица, состоящая из коэффициентов системы и свободных членов. Метод квадратных корней для решения систем с симметричной матрицей коэффициентов. Практическая реализация метода Халецкого: программа на языке Pascal.
Подобные документы
Исследование сущности и сфер применения метода итераций. Нелинейные уравнения. Разработка вычислительный алгоритм метода итераций. Геометрический смысл. Составление программы решения систем нелинейных уравнений методом итераций в среде Turbo Pascal.
реферат, добавлен 11.04.2014Описание методов решения системы линейного алгебраического уравнения: обратной матрицы, Якоби, Гаусса-Зейделя. Постановка и решение задачи интерполяции. Подбор полиномиальной зависимости методом наименьших квадратов. Особенности метода релаксации.
лабораторная работа, добавлен 06.12.2011- 103. Численные методы
Основные понятия теории погрешностей. Приближенное решение некоторых алгебраических трансцендентных уравнений. Приближенное решение систем линейных уравнений. Интерполирование функций и вычисление определенных интегралов, дифференциальных уравнений.
методичка, добавлен 01.12.2009 Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.
курсовая работа, добавлен 02.06.2011Смысл метода Ньютона для решения нелинейных уравнений. Доказательства его модификаций: секущих, хорд, ложного положения, Стеффенсена, уточненного для случая кратного корня, для системы двух уравнений. Оценка качества метода по числу необходимых итераций.
реферат, добавлен 07.04.2015Особенности решения задач Диофантовой "Арифметики", которые решаются с помощью алгебраических уравнений или системы алгебраических уравнений с целыми коэффициентами. Характеристика великой теоремы Ферма, анализ и методы приминения алгоритма Евклида.
реферат, добавлен 03.03.2010Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.
реферат, добавлен 24.08.2015Нахождение собственных значений и собственных векторов матриц. Нетривиальное решение однородной системы линейных алгебраических уравнений. Метод нахождения характеристического многочлена, предложенный А.М. Данилевским. Получение формы Жордано: form.exe.
курсовая работа, добавлен 29.08.2010Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.
задача, добавлен 29.05.2012Изучение формул Крамера и Гаусса для решения систем уравнений. Использование метода обратной матрицы. Составление уравнения медианы и высоты треугольника. Нахождение пределов выражений и производных заданных функций. Определение экстремумов функции.
контрольная работа, добавлен 15.01.2014Извлечение квадратного корня - операция нахождения квадратного корня из неотрицательного числа. Сравнительный анализ способов приближенного извлечения квадратных корней. Характеристика арифметического способа. Вавилонский способ (первый метод Герона).
реферат, добавлен 15.05.2012Неизвестная функция, ее производные и независимые переменные - элементы дифференциального уравнения. Семейство численных алгоритмов решения обыкновенных дифференциальных уравнений, их систем. Методы наименьших квадратов, золотого сечения, прямоугольников.
контрольная работа, добавлен 08.01.2016Применение метода дополнительного аргумента к решению характеристической системы. Доказательство существования решения задачи Коши. Постановка задачи численного расчёта. Дискретизация исходной задачи и её решение итерациями. Программа и её описание.
дипломная работа, добавлен 25.05.2014Методы оценки погрешности интерполирования. Интерполирование алгебраическими многочленами. Построение алгебраических многочленов наилучшего среднеквадратичного приближения. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений.
лабораторная работа, добавлен 14.08.2010- 115. Линейная алгебра
Вычисление определителя, алгебраических дополнений. Выполнение действий над матрицами. Решение систем линейных уравнений по формулам Крамера, методом Гауса. Определение плана выпуска химикатов на заводе. Составление экономико-математической модели задачи.
контрольная работа, добавлен 25.03.2014 Решение системы линейных уравнений по методу определителей, методом исключения (Гаусса), по методу Жордана и Холецкого. Определение недостатков и достоинств всех методов. Условия совместности и определенности системы в зависимости от коэффициентов.
контрольная работа, добавлен 02.05.2012Методы решений иррациональных уравнений. Метод замены переменных. Линейные комбинации двух и более радикалов. Уравнение с одним радикалом. Умножение на сопряженное выражение. Метод решения уравнений путем выделения полных квадратов под знаком радикала.
контрольная работа, добавлен 15.02.2016- 118. Изучение матриц
Назначение и определение алгебраического дополнения элемента определителя. Особенности неоднородной системы линейных алгебраических уравнений. Определение размера матрицы. Решение системы уравнений методом Крамера. Скалярные и векторные величины.
контрольная работа, добавлен 13.07.2009 Общая постановка задачи решения обыкновенных дифференциальных уравнений, особенности использования метода Адамса в данном процессе. Решение системы обыкновенных дифференциальных уравнений методом Адамса и точным методом, сравнение полученных результатов.
курсовая работа, добавлен 27.04.2011Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
контрольная работа, добавлен 24.10.2010- 121. Интерполяционный многочлен Лагранжа. Интерполяционная формула Ньютона с разделёнными разностями
Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.
лабораторная работа, добавлен 16.11.2015 Нахождение полинома Жегалкина методом неопределенных коэффициентов. Практическое применение жадного алгоритма. Венгерский метод решения задачи коммивояжера. Применение теории нечетких множеств для решения экономических задач в условиях неопределённости.
курсовая работа, добавлен 16.05.2010Матричные и векторные вычисления; коллинеарные и компланарные векторы. Определение скалярного произведения векторных величин в трехмерном пространстве. Решение системы линейных уравнений с расширенной матрицей, элементарные преобразования над строками.
контрольная работа, добавлен 30.12.2010- 124. Симплексный метод
Симплексный метод как универсальное решение задач линейного программирования. Применение метода Жордана-Гаусса для системы линейных уравнений в канонической форме. Опорное решение системы ограничений. Критерий оптимальности. Задача канонической формы.
презентация, добавлен 11.04.2013 Особенности решения линейных и нелинейных уравнений. Характеристика и практическое применение и различных методов при решении уравнений. Сущность многочлена Лагранжа и обратного интерполирования. Сравнение численного дифференцирования и интегрирования.
курсовая работа, добавлен 20.01.2010