Равносоставленность и задачи на разрезание
Ознакомление с геометрической и алгебраической формулировками понятия равносоставленности и практическое применение ее свойств при доказательстве обратной теоремы Пифагора методами площадей и подобных треугольников и решении задач на разрезание.
Подобные документы
Понятие и основные свойства обратной функции. Нахождение функции, обратной данной. Область определения функции. Обратимость монотонной функции. Построение графиков функций и определение их свойств. Симметричность графиков функций относительно прямой у=х.
презентация, добавлен 18.01.2015Теоретические основы моделирования: понятие модели и моделирования. Моделирование в решении текстовых задач. Задачи на встречное движение двух тел. Задачи на движение двух тел в одном направлении и в противоположных направлениях. Графические изображения.
курсовая работа, добавлен 03.07.2008Рассмотрение основ векторных полей, физического смысла дивергенции и ротора. Ознакомление с криволинейными и поверхностными интегралами и методами их вычисления. Изучение основных положений теорем Гаусса-Остроградского и Стокса; примеры решения задач.
реферат, добавлен 24.03.2014- 104. Эйлеровы графы
Основные понятия, связанные с графом. Решение задачи Эйлера о семи кёнигсбергских мостах. Необходимые и достаточные условия для эйлеровых и полуэйлеровых графов. Применение теории графов к решению задач по математике; степени вершин и подсчёт рёбер.
курсовая работа, добавлен 16.05.2016 Из истории геометрии, науки об измерении треугольников. Замечательные точки треугольника. Использование геометрических фигур в орнаментах древних народов. Бильярдная рамка, расстановка кеглей в боулинге. Бермудский треугольник. Построения прямых углов.
презентация, добавлен 02.10.2011Сущность понятия "дифференциальное уравнение". Главные этапы математического моделирования. Задачи, приводящие к решению дифференциальных уравнений. Решение задач поиска. Точность маятниковых часов. Решение задачи на определение закона движения шара.
курсовая работа, добавлен 06.12.2013Основные понятия, которые касаются центральной предельной теоремы для независимых одинаково распределенных случайных величин и проверки статистических гипотез. Анализ сходимости последовательностей случайных величин и вероятностных распределений.
курсовая работа, добавлен 13.11.2012Обзор пяти групп аксиом, на которых зиждется планиметрия Лобачевского. Сущность модели Кэли-Клейна в высшей геометрии. Особенности доказательства теоремы косинусов, теорем о сумме углов треугольника, о четвертом признаке конгруэнтности треугольников.
курсовая работа, добавлен 29.06.2013Знакомство с основными понятиями и формулами комбинаторики как науки. Методы решения комбинаторных задач. Размещение и сочетание элементов, правила их перестановки. Характеристики теории вероятности, ее классическое определение, свойства и теоремы.
презентация, добавлен 21.01.2014- 110. Виды треугольников
Треугольник как геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки. Основные элементы данной фигуры: вершины и стороны. Классификация и разновидности треугольников по различным признакам.
презентация, добавлен 28.11.2013 Понятие о геометрическом преобразовании. Роль движений в геометрии. Применение аффинных преобразований при решении задач. Свойства аффинного преобразования. Транзитивность, рефлексивность и симметричность. Свойство перспективно-аффинного соответствия.
курсовая работа, добавлен 08.05.2011Понятия максимума и минимума. Методы решения задач на нахождение наибольших и наименьших величин (без использования дифференцирования), применение их для решения геометрических задач. Использование замечательных неравенств. Элементарный метод решения.
реферат, добавлен 10.08.2014- 113. Текстовые задачи
Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.
презентация, добавлен 20.02.2015 Определение и свойства равнобедренного треугольника. Соотношения для углов, сторон, периметра, площади для равнобедренных треугольников по отношению к вписываемым и описываемым окружностям. Параметры биссектрис, медиан, высот, углов треугольников.
презентация, добавлен 23.04.2015Изучение понятия интегральной суммы. Верхний и нижний пределы интегрирования. Анализ свойств определенного интеграла. Доказательство теоремы о среднем. Замена переменной в определенном интеграле. Производная от интеграла по переменной верхней границе.
презентация, добавлен 11.04.2013Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа, добавлен 18.01.2010Исследования Дж. Кардано и Н. Тарталья в области решения первичных задач теории вероятностей. Вклад Паскаля и Ферма в развитие теории вероятностей. Работа Х. Гюйгенса. Первые исследования по демографии. Формирование понятия геометрической вероятности.
курсовая работа, добавлен 24.11.2010- 118. Методы отсечения
Теоретические основы метода отсечения, его назначение и функции в решении задач целочисленного линейного программирования. Сущность и практическая реализация первого и второго алгоритма Гомори. Применение алгоритма Дальтона, Ллевелина и Данцига.
курсовая работа, добавлен 12.10.2009 - 119. Функция y=ax^2+bx+c
Определение понятия, графического изображения квадратической функции вида y=ax^2+bx+c и сравнение е свойств с функцией y=ax^2. Практическое нахождение оси симметрии, абсциссы и ординаты вершины параболы, координат точек пресечения с осями координат.
конспект урока, добавлен 17.05.2010 Понятие и историческая справка о конусе, характеристика его элементов. Особенности образования конуса и виды конических сечений. Построение сферы Данделена и ее параметры. Применение свойств конических сечений. Расчеты площадей поверхностей конуса.
презентация, добавлен 08.04.2012Сущность закона распределения и его практическое применение для решения статистических задач. Определение дисперсии случайной величины, математического ожидания и среднеквадратического отклонения. Особенности однофакторного дисперсионного анализа.
контрольная работа, добавлен 07.12.2013Проектирование методов математического моделирования и оптимизации проектных решений. Использование кусочной интерполяции при решении задач строительства автомобильных дорог. Методы линейного программирования. Решение специальных транспортных задач.
методичка, добавлен 26.01.2015- 123. Теория вероятностей
Применение формул и законов теории вероятности при решении задач. Формула Байеса, позволяющая определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Центральная предельная теорема.
курсовая работа, добавлен 04.11.2015 Исследование теоретического материала, касающегося задач, решаемых ограниченными средствами. Сущность и содержание теоремы Штейнера – Понселе. Задачи школьного курса геометрии, решаемые циркулем и линейкой, их исследование и методика разрешения.
курсовая работа, добавлен 04.11.2015Применение классического определения вероятности в решении экономических задач. Определение вероятности попадания на сборку бракованных и небракованных деталей. Вычисление вероятности и выборочного значения статистики при помощи формулы Бернулли.
контрольная работа, добавлен 18.09.2010