Застосування чисел Фібоначчі
Коротка біографія Леонардо Пізанського (відоміший як Фібоначчі) - найвидатнішого західного математика Середньовіччя. Значення та основні властивості чисел Фібоначчі. Золотий переріз (формула Біне). Застосування чисел та золотої пропорції в різних галузях.
Подобные документы
Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.
научная работа, добавлен 29.12.2006Вивчення властивостей натуральних чисел. Нескінченість множини простих чисел. Решето Ератосфена. Дослідження основної теореми арифметики. Асимптотичний закон розподілу простих чисел. Характеристика алгоритму пошуку кількості простих чисел на проміжку.
курсовая работа, добавлен 27.07.2015Збагачення запасу чисел, введення ірраціональних чисел. Зведення комплексних чисел у ступінь і знаходження кореня. Окремий випадок формули Муавра. Труднощі при витягу кореня з комплексних чисел. Витяг квадратного кореня із негативного дійсного числа.
курсовая работа, добавлен 26.03.2009Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").
презентация, добавлен 16.12.2011Исторические факты исследования простых чисел в древности, настоящее состояние проблемы. Распределение простых чисел в натуральном ряде чисел, характер и причина их поведения. Анализ распределения простых чисел-близнецов на основе закона обратной связи.
статья, добавлен 28.03.2012Характеристика истории изучения значения простых чисел в математике путем описания способов их нахождения. Вклад Пьетро Катальди в развитие теории простых чисел. Способ Эратосфена составления таблиц простых чисел. Дружественность натуральных чисел.
контрольная работа, добавлен 24.12.2010Математика как одна из самых древних и консервативных наук. Понятие числа, построение их множеств, особенности натуральных чисел, представление иррациональных чисел. Смысл категории "пространство", последствия применения некорректных методов познания.
статья, добавлен 28.07.2010Джерела теорії впорядкованих і частково впорядкованих алгебраїчних систем. Лінійно впорядкований простір ординальних чисел. Цілком упорядковані множини і їхні властивості. Кінцеві ланцюги і їхні порядкові типи. Загальні властивості ординальних чисел.
курсовая работа, добавлен 24.03.2011Сведения о семье Якоба Бернулли, его тайное увлечение математикой в юности и последующий вклад в развитие теории вероятности. Составление ученым таблицы фигурных чисел и выведение формул для сумм степеней натуральных чисел. Расчет значений чисел Бернулли.
презентация, добавлен 02.06.2013Коротка біографія видатного математика Б. Тейлора. Тейлорова формула із залишковим членом у формі Пеано та у Лагранжовій формі. Розвинення деяких елементарних функцій за формулою Тейлора. Формула Тейлора для многочлена та для функції однієї змінної.
курсовая работа, добавлен 20.05.2015Сумма n первых чисел натурального ряда. Вычисление площади параболического сегмента. Доказательство формулы Штерна. Выражение суммы k-х степеней натуральных чисел через детерминант и с помощью бернуллиевых чисел. Сумма степеней и нечетных чисел.
курсовая работа, добавлен 14.09.2015Важная роль простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Необходимость закономерности распределения ПЧ в ряду натуральных чисел. Цель: найти закономерность среди ПЧ + СЧ, а потом закономерность среди
доклад, добавлен 21.01.2009Поиски и доказательства простоты чисел Мерсенна. Окончание простых чисел Мерсенна на цифру 1 и 7. Вопрос сужения диапазона поиска. Эффективный алгоритм Миллера-Рабина. Разделение алгоритмов на вероятностные и детерминированные. Числа джойнт ряда.
статья, добавлен 28.03.2012Проблема универсального генератора простых чисел. Попытки создания формул для нахождения простых чисел. Сущность теоремы сравнений. Доказательство "Малой теоремы Ферма". "Золотая теорема" о квадратичном законе взаимности. Генераторы простых чисел Эйлера.
реферат, добавлен 22.03.2016Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).
лекция, добавлен 07.05.2013Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.
реферат, добавлен 09.07.2009Сутність, особливості та історична поява чисел "пі" та "е". Доведення ірраціональності та трансцендентності чисел "пі" та "е". Методи наближеного обчислення чисел "пі" та "е" за допомогою числових рядів та розкладу в нескінченні ланцюгові дроби.
курсовая работа, добавлен 18.07.2010Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.
реферат, добавлен 13.01.2011Свойства действительных чисел, их роль в развитии математики. Анализ построения множества действительных чисел в историческом аспекте. Подходы к построению теории действительных чисел по Кантору, Вейерштрассу, Дедекинду. Их изучение в школьном курсе.
презентация, добавлен 09.10.2011Применение способа решета Эратосфена для поиска из заданного ряда простых чисел до некоторого целого значения. Рассмотрение проблемы простых чисел-близнецов. Доказательство бесконечности простых чисел-близнецов в исходном многочлене первой степени.
контрольная работа, добавлен 05.10.2010Разработка индийскими математиками метода, позволяющего быстро находить простое число. Биография Эратосфена - греческого математика, астронома, географа и поэта. Признаки делимости чисел. Решето Эратосфена как алгоритм нахождения всех простых чисел.
практическая работа, добавлен 09.12.2009Делимость в кольце чисел гаусса. Обратимые и союзные элементы. Деление с остатком. Алгоритм евклида. Основная теорема арифметики. Простые числа гаусса. Применение чисел гаусса.
дипломная работа, добавлен 08.08.2007Динаміка розвитку поняття ймовірності й математичного очікування. Закон більших чисел, необхідні, достатні умови його застосування. Первісне осмислення статистичної закономірності. Поява теорем Бернуллі й Пуассона - найпростіших форм закону більших чисел.
дипломная работа, добавлен 11.02.2011Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.
контрольная работа, добавлен 29.05.2012Основы геометрии чисел. Решетки, подрешетки и их базисы. Основные теоремы геометрии чисел. Связь квадратичных форм с решетками. Методы геометрии чисел для решения диофантовых уравнений. Теорема Минковского о выпуклом теле. Квадратичная форма решетки.
дипломная работа, добавлен 24.06.2015