Интересные примеры в метрических пространствах

В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб.

Подобные документы

  • Понятия пространств в изучении компактных операторов. Линейный оператор и линейный функционал, сопряженный оператор, компактный множество. Основные свойства компактного операторов. Компактность оператора Вольтерра. Примеры некомпактного оператора.

    реферат, добавлен 27.05.2008

  • Краткое историческое описание становления теории множеств. Теоремы теории множеств и их применение к выявлению структуры различных числовых множеств. Определение основных понятий, таких как мощность, счетные, замкнутые множества, континуальное множество.

    дипломная работа, добавлен 30.03.2011

  • Выпуклые множества. Выпуклый функционал или функционал, определенный на векторном линейном пространстве и обладающий тем свойством, что его надграфик является выпуклым множеством. Функционал Минковского. Доказательство теорем Хана-Банаха и отделимости.

    курсовая работа, добавлен 18.05.2016

  • Способы определения плоскости. Прямые в пространстве, признаки их параллельности, пересечения, скрещивания. Принадлежность прямой плоскости, их параллельность и скрещивание. Перпендикулярность прямой и плоскости. Взаимодействие плоскостей в пространстве.

    презентация, добавлен 13.04.2016

  • Свойства множества Кантора. Исследование заданной функции на непрерывность. Выражение множества B (кладбище Серпинского) и D (гребёнка Кантора) через множество Кантора. Свойства и построение всюду непрерывной, но нигде не дифференцируемой функции.

    курсовая работа, добавлен 24.06.2015

  • Нормальное и каноническое уравнение окружности и эллипса. Понятие эксцентриситета как отношения фокусного расстояния к длине большой оси эллипса. Уравнение и координаты точки, принадлежащей эллипсу. Влияние отношение малой и большой полуосей на фигуру.

    презентация, добавлен 21.09.2013

  • Основные понятия и предложения. Дополняемость в гильбертовых пространствах. Задача о дополняемости. Доказательство замкнутости ядра. Формула изменения коэффициентов Фурье при сдвиге на некоторое вещественное число.

    дипломная работа, добавлен 08.08.2007

  • Стереометрия - это раздел геометрии, в котором изучаются фигуры в пространстве. Определение цилиндра. Элементы и свойства цилиндра. Площадь цилиндра. Площадь полной поверхности цилиндра. Объем цилиндра. В практической части - примеры решения задач.

    методичка, добавлен 10.06.2008

  • Некоторые биографические данные и легенды из жизни Евклида. Основание математической школы и изложение геометрии в труде "Начала", описание метрических свойств пространства и его бесконечности. Сочинения "Оптика" и "Катоптрика" и изобретение монохорда.

    презентация, добавлен 21.12.2010

  • Основные понятия и определения. * - алгебры. Представления. Тензорные произведения. Задача о двух ортопроекторах. Два ортопроектора в унитарном пространстве, в сепарабельном гильбертовом пространстве. Спектр суммы двух ортопроекторов.

    дипломная работа, добавлен 04.06.2002

  • Доказательство теоремы о линейно независимой системе векторов в пространстве Rn. Краткое рассмотрение базиса пространства Rn, в котором каждый вектор ортогонален остальным векторам базиса, особенности его представления на плоскости и в пространстве.

    презентация, добавлен 21.09.2013

  • Раскрытие понятия об уравнение Дирака и вывод его решения в виде плоских волн. Обозначение матриц и рассмотрение их основных свойств. Определение понятия спинора и релятивистских обозначений пространственно-временных координат и метрических тензоров.

    курсовая работа, добавлен 14.06.2011

  • Действие оператора точечной группы в двух- и трехмерном пространстве. Определение его порядка по матрице Система эквивалентных точек. Возможные порядки осей симметрии в кристаллографическом пространстве. Геометрическая интерпретация сложения операторов.

    презентация, добавлен 23.09.2013

  • Определение оператора в гильбертовом пространстве. Индексы дефекта симметрического оператора. Преобразование Кэли и формулы Неймана. Формула Крейна для резольвент самосопряженных расширений заданного симметрического оператора, доказательство теорем.

    курсовая работа, добавлен 18.08.2011

  • Различные способы задания прямой на плоскости и в пространстве. Конструктивные задачи трехмерного пространства. Изображения фигур и их правильное восприятие и чтение. Использование в геометрии монографического и математического метода исследования.

    курсовая работа, добавлен 22.09.2014

  • Определение положения точки в пространстве. Правая декартова (или прямоугольная) система координат. Способы измерения дуг. Определение координат точки в пространстве. Определение окружности и ее радиуса. Построение сферической системы координат.

    контрольная работа, добавлен 13.05.2009

  • Понятие числовой прямой. Типы числовых промежутков. Определение координатами положения точки на прямой, на плоскости, в пространстве, система координат. Единицы измерения для осей. Определение расстояния между двумя точками плоскости и в пространстве.

    реферат, добавлен 19.01.2012

  • Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.

    дипломная работа, добавлен 08.08.2007

  • Правые и левые ориентации. Стороны прямой на плоскости и плоскости в пространстве. Деформации базисов и ориентации. Отношение одноименности отличных от нуля векторов прямой, деформируемости базисов. Задание направления движения по окружности в плоскости.

    контрольная работа, добавлен 09.04.2016

  • Нормированное пространство – одно из основных понятий функционального анализа, дифференцирование. Формула конечных приращений; связь между слабой и сильной дифференцируемостью. Абстрактные функции; интеграл; производные и дифференциалы высших порядков.

    курсовая работа, добавлен 24.01.2011

  • Основная идея метода конечных элементов. Пространство конечных элементов. Простейший пример пространства. Однородные граничные условия и функции. Построение базисов в пространствах. Свойства базисных функций. Коэффициенты системы Ритца–Галеркина.

    лекция, добавлен 30.10.2013

  • Сущность и основные понятия теории графов, примеры и сферы ее использования. Формирование следствий из данных теорий и примеры их приложений. Методы разрешения задачи о кратчайшем пути, о нахождении максимального потока. Графическое изображение задачи.

    курсовая работа, добавлен 14.11.2009

  • Поиск периодических составляющих временного ряда с помощью коррелограммы. Коэффициент автокорреляции и его оценка. Примеры автокорреляционной функции. Критерий Дарбина-Уотсона. Практические расчеты с помощью макроса Excel "Автокорреляционная функция".

    курсовая работа, добавлен 05.05.2011

  • Краткое математическое описание циклических кодов с точки зрения алгебры конечных полей, которого вполне достаточно для решения задачи нахождения порождающего полинома кода, используя корни. Полиномиальное представление двоичных чисел. Определение поля.

    контрольная работа, добавлен 01.01.2011

  • Упорядоченные множества. Решётки. Дистрибутивные решётки. Топологические пространства. Верхние полурешётки. Стоуново пространство. Множество простых идеалов с введенной на нём топологией.

    дипломная работа, добавлен 08.08.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.