Использование нейросимулятора при определении видовой принадлежности грибов
Обучение нейросимулятора определению видовой принадлежности грибов по их заданным внешним признакам с применением алгоритма обратного распространения ошибки. Зависимость погрешностей обучения и обобщения от числа нейронов внутреннего слоя персептрона.
Подобные документы
Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа, добавлен 05.05.2015Обучение нейронных сетей как мощного метода моделирования, позволяющего воспроизводить сложные зависимости. Реализация алгоритма обратного распространения ошибки на примере аппроксимации функции. Анализ алгоритма обратного распространения ошибки.
реферат, добавлен 09.06.2014Применение методов искусственного интеллекта при определении цвета глаз будущего ребенка. Сущность нейросетевых технологий, обучение нейросимуляторов. Зависимость погрешности обучения от погрешности обобщения. Оценка значимости входных параметров.
презентация, добавлен 14.08.2013Эффективность применения нейронных сетей при выборе модели телефона. История искусственного интеллекта. Сущность нейросетевых технологий, обучение нейросимулятора. Пример выбора по определенным параметрам модели сотового телефона с помощью персептрона.
презентация, добавлен 14.08.2013Разработка систем автоматического управления. Свойства нейронных сетей. Сравнительные оценки традиционных ЭВМ и нейрокомпьютеров. Формальная модель искусственного нейрона. Обучение нейроконтроллера при помощи алгоритма обратного распространения ошибки.
реферат, добавлен 05.12.2010Рассмотрение способов применения и основных понятий нейронных сетей. Проектирование функциональной структуры автоматизированной системы построения нейросети обратного распространения ошибки, ее классов и интерфейсов. Описание периода "бета тестирования".
дипломная работа, добавлен 02.03.2010Анализ нейронных сетей и выбор их разновидностей. Модель многослойного персептрона с обучением по методу обратного распространения ошибки. Проектирование библиотеки классов для реализации нейросети и тестовой программы, описание тестирующей программы.
курсовая работа, добавлен 19.06.2010Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа, добавлен 22.06.2011Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.
дипломная работа, добавлен 07.06.2012Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа, добавлен 29.09.2014Рабочее приложение для вычисления принадлежности точки заданной области. Реализация и проверка корректности ввода данных: радиуса, условий попарного пересечения окружностей, принадлежности центров окружностей одной прямой, заключенной внутри окружностей.
курсовая работа, добавлен 13.01.2014Понятия интеллектуальной информационной системы. Нейронные сети и информационные программные средства для реализации их алгоритмов. Моделирование систем в среде MATLAB. Особенности выполнения демонстрационного примера "Обучение персептрона с Learnpn".
курсовая работа, добавлен 20.02.2013Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа, добавлен 23.09.2013Дистанционное обучение как форма организации учебного процесса. Средства и методы дистанционного обучения. Создание и использование дистанционных учебных курсов. Урок теоретического обучения. Компьютерные презентации, лабораторно-практические занятия.
курсовая работа, добавлен 27.02.2010Понятие нечеткого множества и функции принадлежности. Методы дефаззификации (преобразования нечеткого множества в четкое число) для многоэкстремальных функций принадлежности. Нечеткий логический вывод. Примеры выпуклого и невыпуклого нечеткого множества.
презентация, добавлен 16.10.2013Решение с помощью нейросимулятора проблемы прогнозирования исхода выборов президента России. Преимущества нейросетевого подхода. Используемый персептрон. Параметры, которые могли бы помешать Медведеву выиграть на президентских выборах в 2008 году.
презентация, добавлен 14.08.2013Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?
реферат, добавлен 19.05.2006Изучение, освоение на примере симметричных шифров элементы практической криптографии. Использование расширенного алгоритма Евклида для нахождения обратного по модулю числа. Ознакомление с демо-версией программы симметричного шифрования с секретным ключом.
лабораторная работа, добавлен 18.04.2015Использование принципа формирования кода Хэмминга в процессе отладки ошибки. Сложение двоичного числа по модулю в программе и получение кода ошибки для определения разряда, в котором она содержится. Соответствие ошибки определенному разряду операнда.
лабораторная работа, добавлен 29.06.2011Принцип работы алгоритма бинарного поиска в массиве. Способы исследования алгоритма "прямое включение". Формулы зависимости числа сравнений от элементов в массиве. Графики среднего числа сравнений и перемещений практических и теоретических измерений.
курсовая работа, добавлен 07.01.2014Сферы и направления практического применения нейросетевых технологий. Оценка стоимости сотовых телефонов, бывших в употреблении, используемые факторы. Обучение персептрона и оценка значения ошибки. Пути снижения количества ошибок и анализ результатов.
презентация, добавлен 19.08.2013Правовое применение детектора лжи. Алгоритм обратного распространения ошибки. Процент правильного определения результата. Корректировка параметров и поднятие процента правильного определения результатов. Направления развития нейросетевого детектора лжи.
презентация, добавлен 14.08.2013Первое систематическое изучение искусственных нейронных сетей. Описание элементарного перцептрона. Программная реализация модели распознавания графических образов на основе перцептрона. Интерфейс программы, основные окна. Составление алгоритма приложения.
реферат, добавлен 18.01.2014Запись прямого и обратного кода для числа 10010 и -10010. Получение дополнительного кода числа для 16-разрядной ячейки. Перевод в двоичную систему счисления десятичных чисел: 10, 45, 7, 33. Запись в обратном и дополнительном кодах числа -67, -43, -89.
практическая работа, добавлен 19.04.2011Автоматизация процесса профессионального обучения в разных отраслях с применением компьютерных тренажеров. Выбор средств разработки подсистемы автоматизированного обучения компьютерного тренажерного комплекса. Проектирование пользовательских интерфейсов.
дипломная работа, добавлен 27.04.2018