Формула Бернулли. Локальная функция Лапласа
Вероятность выхода прибора за время t в нормальном режиме равна 0,1, в ненормальном 0,7. Семена некоторых растений прорастают с вероятностью 0,8. Найти вероятность того, что из 2000 посаженных семян прорастает 1600 семян; не менее 1600 семян.
Подобные документы
В каждой из двух урн содержится 6 черных и 4 белых шаров. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
контрольная работа, добавлен 19.05.2003Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.
контрольная работа, добавлен 19.12.2013Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.
презентация, добавлен 17.08.2015Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.
реферат, добавлен 18.02.2014Преимущество использования формулы Бернулли, ее место в теории вероятностей и применение в независимых испытаниях. Исторический очерк жизни и деятельности швейцарского математика Якоба Бернулли, его достижения в области дифференциального исчисления.
презентация, добавлен 11.12.2012Практическая задача на определение вероятности того, что студент сдаст коллоквиум. Вероятность бесперебойной работы станков на протяжении часа. Определение надежности работы прибора за время полета, вероятности двух попаданий при трех выстрелах.
контрольная работа, добавлен 24.04.2012Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.
курсовая работа, добавлен 21.01.2011Теория вероятностей: биноминальный закон, закон Пуассона. Задачи. Независимо друг от друга 10 чел. Садятся в поезд, содержащий 15 вагонов. Вероятность того, что все они поедут в разных вагонах?
лабораторная работа, добавлен 07.10.2002Сущность вероятностной задачи-схемы независимых испытаний швейцарского профессора математики Я. Бернулли. Пример решения задачи по формуле Бернулли. Применение методов теории вероятностей в различных отраслях естествознания, техники и прикладных науках.
презентация, добавлен 10.03.2011Общее решение дифференциального уравнения первого порядка. Уравнение с разделенными переменными. Выбор частного интеграла. Частное решение дифференциального уравнения второго порядка. Вероятность проявления события, интегральная формула Муавра-Лапласа.
контрольная работа, добавлен 19.08.2009Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.
методичка, добавлен 25.12.2010Достоверное событие — это событие, наступающее при данных условиях со стопроцентной вероятностью. Классическая вероятностная схема. Вероятность наступления достоверного события. Рассмотрение простейшей вероятностной модели - бросание игрального кубика.
реферат, добавлен 02.12.2009Нахождение количества способов, которыми можно выбрать по 6 карт из колоды, содержащей 36 карт. Поиск вероятности того, что при выдаче изделия со склада оно будет стандартным. Вероятность того, что пассажир дождется троллейбуса в течение ближайших минут.
контрольная работа, добавлен 28.01.2014Практическое применение теории вероятностей. Методы решения задач, в которых один и тот же опыт повторяется неоднократно. Формула Бернулли для описания вероятности наступления события. Биномиальное распределение и формулировка теоремы о повторении опытов.
презентация, добавлен 01.11.2013- 15. Числа Бернулли
Сведения о семье Якоба Бернулли, его тайное увлечение математикой в юности и последующий вклад в развитие теории вероятности. Составление ученым таблицы фигурных чисел и выведение формул для сумм степеней натуральных чисел. Расчет значений чисел Бернулли.
презентация, добавлен 02.06.2013 Случайное событие и его вероятность. Теорема сложения вероятностей. Закон равномерной плотности вероятности. Случайные величины. Функция распределения и ее свойства. Как наука теория вероятности зародилась в 17 веке.
реферат, добавлен 12.02.2005Зарождение теории вероятностей и формирование первых понятий этой ветви математики произошло в середине 17 века, когда Паскаль, Ферма, Бернулли попытались осуществить анализ задач связанных с азартными играми новыми методами.
реферат, добавлен 24.12.2002Определение вероятности наступления заданного события. Расчет математических величин по формуле Бернулли и закону Пуассона. Построение эмпирической функции распределения, вычисление оценки математического ожидания и доверительных интегралов для него.
курсовая работа, добавлен 26.03.2012Определение числа исходов, благоприятствующих данному событию. Теорема умножения вероятностей и сложения несовместных событий, локальная теорема Лапласа. Расчет среднеквадратического отклонения величин. Несмещенная оценка генеральной средней и дисперсии.
контрольная работа, добавлен 31.01.2011Применение формул и законов теории вероятности при решении задач. Формула Байеса, позволяющая определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Центральная предельная теорема.
курсовая работа, добавлен 04.11.2015Поиск искомой вероятности через противоположное событие. Интегральная формула Муавра–Лапласа. Нахождение вероятности попадания в заданный интервал распределенной случайной величины по ее математическому ожиданию и среднему квадратическому отклонению.
контрольная работа, добавлен 17.03.2011Прямое, обратное, двустороннее и дискретное преобразование Лапласа. Применение преобразования Лапласа. Прямое и обратное преобразования Лапласа некоторых функций. Связь с другими преобразованиями. Преобразование Лапласа по энергии и по координатам.
реферат, добавлен 26.11.2010Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.
учебное пособие, добавлен 07.05.2012Вероятность попадания случайной величины Х в заданный интервал. Построение графика функции распределения случайной величины. Определение вероятности того, что наудачу взятое изделие отвечает стандарту. Закон распределения дискретной случайной величины.
контрольная работа, добавлен 24.01.2013Основные понятия комбинаторики. Определение теории вероятности. Понятие математического ожидания и дисперсии. Основные элементы математической статистики. Условная вероятность как вероятность одного события при условии, что другое событие уже произошло.
реферат, добавлен 25.11.2013