Построение эйлерова цикла. Алгоритм Форда и Уоршелла
Эйлеровы цепи и циклы, теоремы. Алгоритм построения эйлерова цикла. Обоснование алгоритма. Нахождение кратчайших путей в графе. Алгоритм Форда отыскания кратчайшего пути. Задача отыскания кратчайших расстояний между всеми парами вершин. Алгоритм Флойда.
Подобные документы
Метод Форда-Беллмана для нахождения расстояния от источника до всех вершин графа. Алгоритмы поиска расстояний и отыскания кратчайших путей в графах. Блочно-диагональный вид и матрица в исследовании системы булевых функций и самодвойственной функции.
курсовая работа, добавлен 10.10.2011Поиск кратчайших путей для пар вершин взвешенного ориентированного графа с весовой функцией. Включение матрицы в алгоритм Флойда, содержащую вершину, полученную при нахождении кратчайшего пути. Матрица, которая содержит длины путей из вершины в вершину.
презентация, добавлен 16.09.2013Основные понятия теории графов. Матричные способы задания графов. Выбор алгоритма Форда–Бэллмана для решения задачи поиска минимальных путей (маршрутов) в любую достижимую вершину нагруженного орграфа. Способы выделения пути с наименьшим числом дуг.
курсовая работа, добавлен 22.01.2016Способы решения задач дискретной математики. Расчет кратчайшего пути между парами всех вершин в ориентированном и неориентированном графах с помощью использования алгоритма Флойда. Анализ задачи и методов ее решения. Разработка и характеристика программы.
курсовая работа, добавлен 22.01.2014Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.
курсовая работа, добавлен 30.09.2014Основные понятия и свойства эйлеровых и гамильтоновых цепей и циклов в теории графов. Изучение алгоритма Дейкстры и Флойда для нахождения кратчайших путей в графе. Оценки для числа ребер с компонентами связанности. Головоломка "Кенигзберзьких мостов".
курсовая работа, добавлен 08.10.2014Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.
курсовая работа, добавлен 23.12.2007- 8. Графы
Граф как совокупность объектов со связями между ними. Характеристики ориентированного и смешанного графов. Алгоритм поиска кратчайшего пути между вершинами, алгоритм дейкстры. Алгебраическое построение матрицы смежности, фундаментальных резервов и циклов.
методичка, добавлен 07.06.2009 Общая характеристика распространенных проблем поиска величины максимального потока в сети при помощи алгоритма Форда-Фалкерсона. Знакомство с задачами по дискретной математике. Рассмотрение особенностей и этапов постройки дерева кратчайших расстояний.
контрольная работа, добавлен 09.03.2015Остовное дерево связного неориентированного графа. Алгоритм создания остовного дерева, его нахождение. Сущность и главные особенности алгоритма Крускала. Порядок построения алгоритма Прима, вершина наименьшего веса. Промежуточная структура данных.
презентация, добавлен 16.09.2013Основные понятия теории графов. Содержание метода Дейкстры нахождения расстояния от источника до всех остальных вершин в графе с неотрицательными весами дуг. Программная реализация исследуемого алгоритма. Построение матриц смежности и инцидентности.
курсовая работа, добавлен 30.01.2012Потоки в сетях, структура и принципы формирования алгоритма Форда-Фалкерсона, особенности его реализации программным методом. Минимальные остовные деревья. Алгоритм Борувки: понятие и назначение, сферы и специфика практического использования, реализация.
курсовая работа, добавлен 15.06.2015- 13. Графы
Понятия и определения орграфа и неориентированного графа, методы решения. Неориентированные и ориентированные деревья. Подробное описание алгоритмов нахождения кратчайших путей в графе: мультиграф, псевдограф. Матрица достижимостей и контрдостижимостей.
курсовая работа, добавлен 16.01.2012 Необхідні поняття теорії графів. Задача про максимальний потік. Алгоритм Форда знаходження максимального потоку. Модифікація алгоритму Форда розв’язання задачі максимізації кількості призначень у задачах розподілу. Результати числового експерименту.
курсовая работа, добавлен 18.12.2013Вид графов, используемых в теории электрических цепей, химии, вычислительной технике и в информатике. Основные свойства деревьев. Неориентированный граф. Алгоритм построения минимального каркаса. Обоснование алгоритма. Граф с нагруженными ребрами.
реферат, добавлен 11.11.2008- 16. Алгоритм муравья
Механизмы реализации эвристических алгоритмов муравьиной колонии. Основная идея - использование механизма положительной обратной связи, помогающего найти наилучшее приближенное решение в сложных задачах оптимизации. Области применения алгоритма муравья.
реферат, добавлен 07.05.2009 Понятие и содержание теории графов. Правила построения сетевых графиков и требования к ним. Сетевое планирование в условиях неопределенности. Теория принятия решений, используемые алгоритмы и основные принципы. Пример применения алгоритма Дейкстры.
курсовая работа, добавлен 26.09.2013Алгоритм построения минимального остовного дерева. Последовательность выполнения алгоритма Прима, его содержание и назначение. Процедура рисования графа. Порядок составления и тестирования программы, ее интерфейс, реализация и правила эксплуатации.
курсовая работа, добавлен 30.04.2011История слова "алгоритм", понятие, свойства, виды. Алгоритм Евклида, решето Эратосфена; математические алгоритмы при действии с числами и решении уравнений. Требования к алгоритмам: формализация входных данных, память, дискретность, детерминированность.
реферат, добавлен 14.05.2015Понятия теории графов. Понятия смежности, инцидентности и степени. Маршруты и пути. Матрицы смежности и инцедентности. Алгоритм поиска минимального пути в ненагруженном ориентированном орграфе на любом языке программирования, алгоритм фронта волны.
курсовая работа, добавлен 28.04.2011Особенности дифференциальных уравнений как соотношения между функциями и их производными. Доказательство теоремы существования и единственности решения. Примеры и алгоритм решения уравнений в полных дифференциалах. Интегрирующий множитель в примерах.
курсовая работа, добавлен 11.02.2014Полнота и замкнутость системы булевых функций. Алгоритм построения таблицы истинности двойственной функции. Класс L линейных функций, сущность полинома Жегалкина. Распознавание монотонной функции по вектору ее значений. Доказательство теоремы Поста.
учебное пособие, добавлен 20.08.2014- 23. Метод Гомори
Задача целочисленного линейного программирования, приведение к канонической форме. Общие идеи методов отсечения. Алгоритм Гомори для решения целочисленных задач линейного программирования. Понятие правильного отсечения и простейший способ его построения.
курсовая работа, добавлен 25.11.2011 Алгоритм перехода к каноническому виду стандартной формы ЗЛП. Симплексные преобразования при изменении базисных переменных. Графический способ упорядочения вершин. Расчет параметров сетевого графика. Устойчивость решений ЗЛП при изменении параметров.
учебное пособие, добавлен 14.07.2011Теория графов как математический аппарат для решения задач. Характеристика теории графов. Критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Алгоритм на графах Дейкстры.
контрольная работа, добавлен 11.03.2011