Второй замечательный предел

Применение второго замечательного предела для раскрытия неопределенности. Точки разрыва непрерывной функции 1-го и 2-го рода. Условия ее непрерывности в точке, интервале и на отрезке. Теоремы Вейерштрасса и Больцано-Коши. Обращение функции в ноль.

Подобные документы

  • Производная — основное понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Геометрический и механический смысл приращения функции. Правило дифференцирования, критические точки, экстремум; интегрирование.

    презентация, добавлен 11.09.2011

  • Доказательство теоремы единственности для кривых второго порядка. Преимущества и недостатки разных способов доказательства теоремы единственности. Пучок кривых второго порядка. Методы решения теоремы единственности для поверхностей второго порядка.

    курсовая работа, добавлен 22.01.2011

  • Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.

    задача, добавлен 02.10.2009

  • Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.

    курсовая работа, добавлен 24.11.2013

  • Определение точки экстремума для функции двух переменных. Аналог теоремы Ферма. Критические, стационарные точки. Теорема "Достаточное условие экстремума", доказательство. Схема исследования функции нескольких переменных на экстремум, практический пример.

    презентация, добавлен 17.09.2013

  • Интегралы, у которых один или оба предела интегрирования бесконечны, и у которых функция не ограничена на отрезке интегрирования. Понятие несобственных интегралов с бесконечными пределами интегрирования. Геометрический смысл несобственного интеграла.

    презентация, добавлен 18.09.2013

  • Рекурсивное, тригонометрическое определение и свойства многочленов Чебышёва. Сущность теоремы Е.И. Золотарёва-А.Н. Коркина. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Обобщение метода Грамма-Шарлье.

    курсовая работа, добавлен 11.01.2011

  • Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.

    контрольная работа, добавлен 11.03.2015

  • Теорема Ферма: содержание, доказательство, геометрический смысл. Теорема Ролля: производная функции, отсутствие непрерывности Отсутствует и дифференцируемости. Доказательство теоремы Лагранжа, общий вид, геометрический смысл, содержание следствия.

    презентация, добавлен 21.09.2013

  • Несобственные интегралы первого, второго и третьего рода. Вычисление несобственных интегралов с помощью вычетов. Несобственные интегралы, содержащие параметр. Гамма-функция и бета-функция Эйлера. Критерий Коши и эквивалентные условия сходимости.

    курсовая работа, добавлен 20.09.2013

  • Вид определенного интеграла от непрерывной на заданном отрезке функции. Сущность квадратурных формул. Нахождение численного значения интеграла с помощью методов левых и правых прямоугольников, трапеций, парабол. Выведение общей формулы Симпсона.

    презентация, добавлен 18.04.2013

  • Общий вид интеграла с переменным верхним пределом, его основные свойства. Теорема о среднем, её следствие. Функция, причины ее непрерывности, доказательство, её наименьшее и наибольшее значение. Связь между неопределенным и определенным интегралом.

    презентация, добавлен 18.09.2013

  • Решение системы трех уравнений с тремя неизвестными при помощи определителей. Исследование системы на совместность, составление канонического уравнения эллипса. Изучение функции методами дифференциального исчисления, поиск точки разрыва функции.

    контрольная работа, добавлен 16.04.2010

  • Поверхностный интеграл как интеграл от функции, заданной какой-либо поверхности. Сущность и понятие поверхностного интеграла первого и второго рода, взаимосвязь между ними и вычисление. Формулы Остроградского и Стокса, их доказательство и применение.

    курсовая работа, добавлен 09.10.2011

  • Составление структурной схемы дискретной системы по разностному уравнению. Частотный коэффициент передачи. Методы вычисления обратного Z-преобразования. Определение системной функции рекурсивного фильтра второго порядка с применением теоремы о вычетах.

    презентация, добавлен 19.08.2013

  • Понятие непрерывности функции. Понятие, физический и геометрический смысл производной. Локальный экстремум и теорема Ферма. Теорема Ролля о нулях производных. Формула конечных приращении Лагранжа. Обобщенная формула конечных приращении (формула Коши).

    курсовая работа, добавлен 17.03.2015

  • Условия разложения функций для тригонометрического ряда. Определение коэффициентов разложения с помощью ортогональности систем тригонометрических функций. Понятие периодического продолжения функции, заданной на отрезке. Ряд Фурье функции у=f(x).

    презентация, добавлен 18.09.2013

  • Доказательство замечательных пределов величайшими умами знаменитых математиков. Неактуальность расчетов тригонометрических функций, логарифмов и степеней. Нахождение первого и второго замечательных пределов. Проведение модификации и значение пределов.

    презентация, добавлен 27.06.2014

  • Нахождение производных функций, построение графика функции с помощью методов дифференциального исчисления, нахождение точки пересечения с осями координат. Исследование функции на возрастание и убывание, нахождение интегралов, установка их расходимости.

    контрольная работа, добавлен 09.04.2010

  • Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.

    курсовая работа, добавлен 29.04.2013

  • Решение задачи Коши для дифференциального уравнения. Погрешность приближенных решений. Функция, реализующая явный метод Эйлера. Вычисление погрешности по правилу Рунге. Решение дифференциальных уравнений второго порядка. Условие устойчивости для матрицы.

    контрольная работа, добавлен 13.06.2012

  • Введение новых динамических систем и их решений, специальных функций эллиптических и тета-функций, зависящих от одного параметра, разложение эллиптических функций Якоби в ряды Фурье (теоремы разложения). Рассмотрение их связи с функцией Вейерштрасса.

    курсовая работа, добавлен 26.04.2011

  • Общие свойства эллиптических интегралов и эллиптических функций. Параллелограммы периодов, основные теоремы. Эллиптические функции второго порядка. Вычисление длины дуги эллипса, эллиптические координаты, сумма вычетов эллиптической функции.

    курсовая работа, добавлен 26.04.2011

  • Определение предела последовательности. Понятие производной и правила дифференцирования. Теоремы Роля, Лангража, правило Лапиталя. Исследования графиков функций. Таблица неопределенных и вычисление определенных интегралов. Функции нескольких переменных.

    презентация, добавлен 17.03.2010

  • Нахождение производных функций. Определение наибольшего и наименьшего значения функции. Область определения функции. Определение интервалов возрастания, убывания и экстремума. Интервалы выпуклости, вогнутости и точки перегиба. Производные второго порядка.

    контрольная работа, добавлен 07.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.